JOURNAL BROWSE
Search
Advanced SearchSearch Tips
VARIATIONS OF THE LENGTH INTEGRAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 1,  2014, pp.141-146
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.1.141
 Title & Authors
VARIATIONS OF THE LENGTH INTEGRAL
Pyo, Yong-Soo; Oh, Won Tae; Son, Heui-Sang;
  PDF(new window)
 Abstract
In this paper, we obtain a necessary and sufficient condition for the second variation of an arbitrarily given smooth variation of a geodesic on a Riemannian manifold to be 0.
 Keywords
the first (second) variation;variational vector field;geodesic;
 Language
English
 Cited by
 References
1.
J.-S. Park, Curvature on SU(3)=T (k, l), Kyushu J. Math. 67(1) (2013), 55-65. crossref(new window)

2.
Y.-S. Pyo, H.-J. Shin and J.-S. Park, Scalar curvatures on SU(3)=T (k, l), Honam Math. J. 33(4) (2011), 547-556. crossref(new window)

3.
M. Spivak, A Comprehensive Introduction to Di erential Geometry II, Publish or Perish, Inc. Berkeley, 1979.

4.
H. Urakawa, Calculus of Variations and Harmonic Maps (in Japanese), Shokabo Publ., 1990.