JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG𝓛
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 1,  2014, pp.29-32
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.1.29
 Title & Authors
SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG𝓛
Kang, Joo Ho; Lee, SangKi;
  PDF(new window)
 Abstract
Given operators X and Y acting on a separable Hilbert space , an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let be a subspace lattice acting on a separable complex Hilbert space and let X = () and Y = () be operators acting on . Then the following are equivalent: (1) There exists a self-adjoint operator A = () in such that AX = Y. (2) There is a bounded real sequence {} such that for .
 Keywords
self-adjoint interpolation;CSL-algebra;tridiagonal algebra;Alg;
 Language
English
 Cited by
 References
1.
Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120. crossref(new window)

2.
Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126. crossref(new window)

3.
Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33(4) (1989), 657-672.

4.
Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.

5.
Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 19(3) (1969), 45-68.

6.
Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418. crossref(new window)