JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 1,  2014, pp.55-66
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.1.55
 Title & Authors
A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS
Lee, Kwangchul; Kim, Daeyeoul; Seo, Gyeong-Sig;
  PDF(new window)
 Abstract
In this paper, we study the convolution sums involving odd divisor functions, and their relations to Weierstrass -functions.
 Keywords
Weierstrass (x) functions;divisor functions;convolution sums;
 Language
English
 Cited by
 References
1.
A. Alaca, S. Alaca, and K. S. Williams, The convolution sum ${\Sigma}_{m, Canad. Math. Bull. 51(1) (2008), 3-14. crossref(new window)

2.
A. Alaca, S. Alaca, and K. S. Williams, The convolution sum ${\Sigma}_{l+24m=n}{\sigma}(l){\sigma}(m)$ and ${\Sigma}_{3l+8m=n}{\sigma}(l){\sigma}(m)$, Math. J. Okayama Univ. 49 (2007), 93-111.

3.
B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.

4.
B. Cho, D. Kim, and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76(3-4) (2010), 495-508.

5.
B. Cho, D. Kim, and J.-K. Koo, Modula forms arising from divisor functions, J. Math. Anal. Appl. 356(2) (2009), 537-547. crossref(new window)

6.
J. W. L. Glaisher, On the square of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.

7.
J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.

8.
J. W. L. Glaisher, Expressions for the five powers of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.

9.
H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), 1593-1622. crossref(new window)

10.
J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.

11.
D. Kim, A. Kim, and H. Park, Congruences of the Weierstrass ${\wp}(x)$ and ${\wp}^{{\prime}{\prime}}(x)(x=\frac{1}{2},\frac{\tau}{2},\frac{{\tau}+1}{2})$-Functions on divisors, Bull. Korean Math. Soc. 50 (2013), 241-261. crossref(new window)

12.
D. Kim, A. Kim, and A. Sankaranarayanan, Eisenstein seires and their applications to some arithmetic identities and congruences, Advances in Difference Equations 2013, 2013:84.

13.
A. Kim, D. Kim and L. Yan, Convolution sums arising from divisor functions, J. Korean Math. Soc. 50 (2013), 331-360. crossref(new window)

14.
S. Lang, elliptic Functions, Addison-Wesly, 1973.

15.
Erin McAfee, A three term arithmetic formula of liouville type with application to sums of six squares, B. Math.(Honors), Carleton University, 2004.

16.
G. Melfi, On some modular identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998, 371-382.