JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GRAPHICAL ARRANGEMENTS OF COMPRESSED GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 1,  2014, pp.85-102
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.1.85
 Title & Authors
GRAPHICAL ARRANGEMENTS OF COMPRESSED GRAPHS
Nguyen, Thi A.; Kim, Sangwook;
  PDF(new window)
 Abstract
We show that if a graph G is compressed, then the proper part of the intersection poset of the corresponding graphical arrangement has the homotopy type of a wedge of spheres. Furthermore, we also indicate the number of spheres in the wedge, based on the number of adjacent edges of vertices in G.
 Keywords
compressed graph;graphical arrangement;
 Language
English
 Cited by
 References
1.
Anders Bjorner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260(1) (1980), 159-183. crossref(new window)

2.
Anders Bjorner and Michelle Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc., 277(1) (1983), 323-341. crossref(new window)

3.
Anders Bjorner and Michelle L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4) (1996), 1299-1327. crossref(new window)

4.
Anders Bjorner and Michelle L. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc., 349(10) (1997), 3945-3975. crossref(new window)

5.
Curtis Greene and Thomas Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc., 280(1) (1983), 97-126. crossref(new window)

6.
Dmitry Kozlov, Combinatorial algebraic topology, volume 21 of Algorithms and Computation in Mathematics, Springer, Berlin, 2008.

7.
Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math., 56(2) (1980), 167-189. crossref(new window)

8.
Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, volume 300 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1992.

9.
R. P. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), 197-217. crossref(new window)

10.
Richard P. Stanley, An introduction to hyperplane arrangements, In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 389-496. Amer. Math. Soc., Providence, RI, 2007.

11.
Michelle L. Wachs, A basis for the homology of the d-divisible partition lattice, Adv. Math., 117(2) (1996), 294-318. crossref(new window)

12.
Michelle L. Wachs, Poset topology: tools and applications, In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 497-615. Amer. Math. Soc., Providence, RI, 2007.

13.
Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., 1(issue 1, 154):vii+102, 1975.