JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.217-232
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.217
 Title & Authors
GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION
Jin, Dae Ho;
  PDF(new window)
 Abstract
In this paper, we study the geometry of half lightlike submanifolds of an indefinite Kaehler manifold equipped with a quarter-symmetric metric connection. The main result is to prove several classification theorems for such half lightlike submanifolds.
 Keywords
quarter-symmetric connection;metric connection;half lightlike submanifold;
 Language
English
 Cited by
 References
1.
G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344. crossref(new window)

2.
K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Man- ifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

3.
K.L. Duggal and D.H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ., 22 (1999), 121-161.

4.
K.L. Duggal and D.H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

5.
K.L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.

6.
S. Golab, On semi-symmetric and quarter-symmetric connections, Tensor, N.S., 29 (1975), 249-254.

7.
D.H. Jin, Screen conformal lightlike real hypersurfaces of an indefinite complex space form, Bull. Korean Math. Soc. 47(2) (2010), 341-353. crossref(new window)

8.
D.H. Jin, Geometry of screen conformal real half lightlike submanifolds, Bull. Korean Math. Soc. 47(4) (2010), 701-714. crossref(new window)

9.
D.H. Jin, Real half lightlike submanifolds with totally umbilical properties, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 17(1) (2010), 51-63.

10.
D.H. Jin, Real half lightlike submanifolds of an indefinite Kaehler manifold, Commun. Korean Math. Soc. 26(4) (2011), 635-647. crossref(new window)

11.
D. Kamilya and U.C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian, J. Pure and Appl. Math., 26 (1995), 29-34.

12.
R.S. Mishra and S.N. Pandey, On quarter-symmetric F-connections, Tensor, N.S. 34 (1980), 1-7.

13.
J. Nikic and N. Pusic, A remakable class of natural metric quarter-symmetric connection on a hyperbolic Kaehler space, Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 96-101, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.

14.
N. Pusic, On quarter-symmetric metric connections on a hyperbolic Kaehler space, Publ. de l' Inst. Math, 73(87) (2003), 73-80. crossref(new window)

15.
S.C. Rastogi, On quarter-symmetric metric connections, C.R. Acad Sci. Bulgar, 31 (1978), 811-814.

16.
S.C. Rastogi, On quarter-symmetric metric connections, Tensor, 44(2) (1987), 133-141.

17.
K. Yano and T. Imai, Quarter-symmwtric metric connection and their curvature tensors, Tensor, N.S., 38 (1982).