JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.233-251
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.233
 Title & Authors
POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE
Ali, Ahmad T.; Mahmoud, S.R.;
  PDF(new window)
 Abstract
In this paper, position vector of a spacelike slant helix with respect to standard frame are deduced in Minkowski space . Some new characterizations of a spacelike slant helices are presented. Also, a vector differential equation of third order is constructed to determine position vector of an arbitrary spacelike curve. In terms of solution, we determine the parametric representation of the spacelike slant helices from the intrinsic equations. Thereafter, we apply this method to find the parametric representation of some special spacelike slant helices such as: Salkowski and anti-Salkowski curves.
 Keywords
Minkowski 3-space;slant helix;intrinsic equations;
 Language
English
 Cited by
 References
1.
A. Jain, G. Wang and K.M. Vasquez, DNA triple helices: biological consequences and therapeutic potential, Biochemie, 90 (2008), 1117-1130. crossref(new window)

2.
Y. Yin, T. Zhang, F. Yang and X. Qui, Geometric conditions for fractal super carbon nanotubes with strict self-similarities, Chaos, Solitons and Fractals, 37 (2008), 1257-1266. crossref(new window)

3.
J.D. Watson and F.H. Crick, Molecular structures of nucleic acids, Nature, 171 (1953), 737-738. crossref(new window)

4.
N. Chouaieb, A. Goriely and J.H. Maddocks, Helices, PNAS, 103 (2006), 398-403.

5.
T.A. Cook, The curves of life, Constable, London 1914; Reprinted (Dover, London, 1979).

6.
X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geomet. Design, 20 (2003), 303-317. crossref(new window)

7.
K. Ilarslan and O. Boyacioglu, Position vectors of a spacelike W-curve in Minkowski Space $E^3_1$, Bull. Korean Math. Soc., 44 (2007), 429-438. crossref(new window)

8.
K. Ilarslan, and O. Boyacioglu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos, Solitons and Fractals, 38 (2008), 1383-1389. crossref(new window)

9.
M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc., 125 (1997), 1503-1509. crossref(new window)

10.
M. Barros, A. Ferrandez, P. Lucas and M.A. Merono, General helices in the three dimensional Lorentzian space forms, Rocky Mountain J. Math., 31 (2001), 373-388. crossref(new window)

11.
A. Ferrandez, A. Gimenez and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A, 16 (2001), 4845-4863. crossref(new window)

12.
J. Walrave, Curves and Surfaces in Minkowski Space, Doctoral thesis, K.U. Leuven, Faculty of Science, Leuven, 1995.

13.
M.S. El Naschie, Notes on superstings and the infinite sums of Fibonacci and Lucas numbers, Chaos, Solitons and Fractals, 12 (2001), 1937-1940. crossref(new window)

14.
M.S. El Naschie, Experimental and theoretial arguments for the number and mass of the Higgs particles, Chaos, Solitons and Fractals, 23 (2005), 1901-1908. crossref(new window)

15.
S. Falcon and A. Plaza, On the 3-dimensional k-Fibonacci spirals, Chaos, Solitons and Fractals, 38 (2008), 993-1003. crossref(new window)

16.
A.T. Ali and R. Lopez, Slant helices in Minkowski space $E^3_1$, J. Korean Math. Soc. 48 (2011), 159-167. crossref(new window)

17.
J. Monterde, Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design, 26 (2009), 271-278. crossref(new window)

18.
E. Salkowski, Zur transformation von raumkurven, Mathematische Annalen, 66 (1909), 517-537. crossref(new window)

19.
A.T. Ali, Spacelike Salkowski and anti-Salkowski curves with a spacelike principal normal in Minkowski 3-space, Int. J. Open Problems Comp. Math. 2 (2009), 451- 460.

20.
A.T. Ali, Timelike Salkowski curves in Minkowski space $E^3_1$, J. Adv. Res. Dyn. Cont. Syst. 2 (2010), 17-26.

21.
A.T. Ali, Position vectors of spacelike general helices in Minkowski 3-space, Nonl. Anal. Theory Meth. Appl. 73 (2010), 1118-1126. crossref(new window)

22.
A.T. Ali and M. Turgut, Position vectors of a timelike general helices in Minkowski 3-space, Glob. J. Adv. Res. Class. Mod. Geom. 2(1) (2013), 1-10.

23.
A.T. Ali and M. Turgut, Position vector of a timelike slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365 (2010), 559-569. crossref(new window)

24.
S. Yilmaz, Determination of spacelike curves by Vector Differential Equations in Minkowski space $E^3_1$, J. Adv. Res. Pure Math., 1 (2009), 10-14.

25.
B O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.

26.
J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer, 2006.

27.
L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., 1909.