JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A STUDY OF ERROR BOUNDS OF TRAPEZOIDAL RULE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.291-303
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.291
 Title & Authors
ON A STUDY OF ERROR BOUNDS OF TRAPEZOIDAL RULE
Hahm, Nahmwoo; Hong, Bum Il;
  PDF(new window)
 Abstract
In this paper, through a direct computation with subintervals partitioning [0, 1], we compute better a posteriori bounds for the average case error of the difference between the true value of with [0, 1] minus the composite trapezoidal rule and the composite trapezoidal rule minus the basic trapezoidal rule for by using zero mean-Gaussian.
 Keywords
trapezoidal rule;average case setting;error analysis;
 Language
English
 Cited by
 References
1.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975

2.
N. Hahm and B. I. Hong, An Error of Composite Trapezoidal Rule, J. of Appl. Math. & Computing, 13 (2003), 365-372.

3.
B. I. Hong, N. Hahm and M. Yang, An Error Bounds of Trapezoidal Rule on Subintervals Using Zero-mean Gaussian, J. of Korea information processing Soc., 12-A (2005), 391-394.

4.
M. Yang and B. I. Hong, A Study of Average Error Bound of Trapezoidal Rule, Honam Math. J., 30(1) (2008), 581-587. crossref(new window)

5.
H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 463 (1975), 1-109. crossref(new window)

6.
E. Novak, Deterministic and Stochastic Error Bound in Numerical Analysis, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1349, 1988.

7.
A. V. Skorohod, Integration in Hilbert Space, Springer-Verlag, New York, 1974

8.
A. V. Suldin, Wienner Measure and Its Applications to Approximation Methods, I, Izv. Vyssh. Ucheb. Zaved. Mat., 13 (1959), 145-158.

9.
A. V. Suldin, Wienner Measure and Its Applications to Approximation Methods, II, Izv. Vyssh. Ucheb. Zaved. Mat., 18 (1960), 165-179.

10.
J. F. Traub, G. W. Wasilkowski and H. Wozniakowski, Information-Based Com-plexity, Academic Press, New York, 1988.

11.
N. N. Vakhania, Probability Distributed on Linear Spaces, North-Holland, New York, 1981

12.
G. W. Wasikowski, On a Posteriori Upper Bounds for Approximating Linear Functionals in a Probabilistic Setting, J. of Complexity, 57 (1992), 424-433.