JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE IDEAL τ(M) AND LOCALLY CYCLIC PROJECTIVE MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.339-344
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.339
 Title & Authors
THE IDEAL τ(M) AND LOCALLY CYCLIC PROJECTIVE MODULES
Cho, Yong Hwan;
  PDF(new window)
 Abstract
In this paper, we give some properties on projective modules, locally cyclic projective modules and the ideal .
 Keywords
pure submodule;locally cyclic;projective module and multiplication modules;
 Language
English
 Cited by
1.
(p, q)-Extended Bessel and Modified Bessel Functions of the First Kind, Results in Mathematics, 2017  crossref(new windwow)
 References
1.
M.M. Ali, Some Remarks on Multiplication and Projective Modules II, Comm. in Algebra 41 (2013), 195-214. crossref(new window)

2.
M.M. Ali and D.J. Smith, Locally cyclic projective Modules, New Zealand J. of Math. 34 (2005), 11-23.

3.
M.M. Ali and D.J. Smith, Pure Submodules of Multiplication Modules, Beitrage Algebra Geom. 45(1) (2004), 61-74.

4.
M.M. Ali. and D.J. Smith, Some Remarks on Multiplication and Projective Mod-ules, Comm. in Algebra 32(10) (2004), 3897-3907. crossref(new window)

5.
D.D. Anderson and Yousef Al-Shanifi, Multiplication modules and the ideal $\theta$(M), Comm. in Algebra 30(7) (2002), 3383-3390. crossref(new window)

6.
Z.E. Bast and P.F. Smith, Multiplication Modules, Comm. in Algebra 16(4) (1988), 755-779. crossref(new window)

7.
A. Barnard, Multiplication Modules, Journal of Algebra 71 (1981), 174-178. crossref(new window)

8.
C. Faith, Algebra I: Rings, Modules and Categories, Springer-Verlag, 1981

9.
Sh. Ghalandarzadeh, P. Malakoti rad, S. Shirinkam, Multiplication Modules and Cohen's Theorem, Math. Sciences 2(3) (2008), 251-260.

10.
A.G. Naum and A.S. Mijbass, Weak Cancellation Modules, Kuyngpook Math. J 37 (1997), 73-82.

11.
D.G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, 1968.