JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.345-355
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.345
 Title & Authors
ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION
Choi, Junesang; Rathie, Arjun K.;
  PDF(new window)
 Abstract
The main objective of this paper is to obtain a formula containing eleven interesting results for the reducibility of Kamp de Friet function. The results are derived with the help of two general results for the series very recently presented by Kim et al. Well known Kummer`s second theorem and its contiguous results proved earlier by Rathie and Nagar, and Kim et al. follow special cases of our main findings.
 Keywords
gamma function;hypergeometric function;generalized hypergeometric function;Kamp de Friet function;Kummer`s second theorem;Dixon and Whipple`s summation theorems;
 Language
English
 Cited by
1.
On a reducibility of the Kampé de Fériet function, Mathematical Methods in the Applied Sciences, 2015, 38, 12, 2600  crossref(new windwow)
 References
1.
P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper-spheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.

2.
W. N. Bailey, Product of generalized hypergeometric series, Proc. London Math. Soc. (ser. 2) 28 (1928), 242-254.

3.
W. N. Bailey, Generalized Hypergeometric Series, Stechert Hafner, New York, 1964.

4.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeomet-ric functions, Quart. J. Math. (Oxford ser.) 11 (1940), 249-270.

5.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeomet-ric functions (II), Quart. J. Math. (Oxford ser.) 12 (1941), 112-128.

6.
R. G. Buschman and H. M. Srivastava, Some identities and reducibility of Kampe de Feriet functions, Math. Proc. Cambridge Philos. Soc. 91 (1982), 435-440. crossref(new window)

7.
H. Exton, Multiple hypergeometric functions, Ellis Horwood, Chichester, UK, 1976.

8.
H. Exton, On the reducibility of the Kampe de Feriet function, J. Comput. Appl. Math. 83 (1997), 119-121. crossref(new window)

9.
P. W. Karlsson, Some reduction formulae for power series and Kampe de Feriet function, Proc. A. Kon, Nederl. Akad. Weten. 87 (1984), 31-36. crossref(new window)

10.
Y. S. Kim, On certain reducibility of Kampe de Feriet function, Honam Math. J. 31(2) (2009), 167-176. crossref(new window)

11.
Y. S. Kim, M. A. Rakha, and A. K. Rathie, Generalization of Kummer's second theorem with applications, Comput. Math. Math. Phys. 50(3) (2010), 387-402. crossref(new window)

12.
Y. S. Kim, M. A. Rakha, and A. K. Rathie, Extensions of certain classical summation theorems for the series $_2F_1$ and $_3F_2$ with applications in Ramanujan's summations, Int. J. Math. Math. Sci. 2010, to appear.

13.
E. D. Krupnikon, A Register of Computer-Oriented Reduction Identities for the Kampe de Feriet function, Novosibirsk, Russia, 1996.

14.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of a $_3F_2$, Indian J. Math. 34(2) (1992), 23-32.

15.
J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum of a $_3F_2$, Math. Comput. 62 (1994), 267-276.

16.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a $_3F_2$, J. Comput. Appl. Math. 72 (1996), 293-300. crossref(new window)

17.
S. Lewanowicz, Generalized Watson's summation formula for $_3F_2$(1), J. Comput. Appl. Math. 86 (1997), 375-386. crossref(new window)

18.
M. Milgram, On hypergeometric $_3F_2(1)$, Arxiv: math. CA/ 0603096, 2006.

19.
E. D. Rainville, Special Functions, Macmillan Company, New York, 1960;Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.

20.
M. A. Rakha and A. K. Rathie, Generalizations of classical summation theorems for the series $_2F_1$ and $_3F_2$ with applications, submitted for publication, 2010.

21.
A. K. Rathie and J. Choi, Another proof of Kummer's second theorem, Commun. Korean Math. Soc. 13 (1998), 933-936.

22.
A. K. Rathie and V. Nagar, On Kummer's second theorem involving product of generalized hypergeometric series, Le Math. (Catania) 50 (1995), 35-38.

23.
L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London, and New York, 1966.

24.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

25.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1985.

26.
H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1984.

27.
H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. 12(2) (1976), 419-425.

28.
R. Vidunas, A generalization of Kummer's identity, Rocky Mount. J. Math. 32 (2002), 919-935; also available at http://arxiv.org/abs/mathCA/005095. crossref(new window)