JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A GENERALIZATION OF A SEQUENTIAL SPACE AND RELATED SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.425-434
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.425
 Title & Authors
A GENERALIZATION OF A SEQUENTIAL SPACE AND RELATED SPACES
Hong, Woo Chorl; Kwon, Seonhee;
  PDF(new window)
 Abstract
In this paper, we introduce a new concept of a countably sequential space which is a generalization of a sequential space and study some properties of a countably sequential space and relations among the space and related spaces.
 Keywords
sequential;countably sequential;countable tightness;Frchet-Urysohn;AP;countably AP;WAP;WACP;sequentially compact;
 Language
English
 Cited by
1.
A NOTE ON SPACES DETERMINED BY CLOSURE-LIKE OPERATORS, East Asian mathematical journal, 2016, 32, 3, 365  crossref(new windwow)
 References
1.
A. V. Arhangel'skii and L. S. Pontryagin (Eds.), General Topology I, Encyclopae-dia of Mathematical Sciences, vol. 17, Springer-Verlage, Berlin, 1990.

2.
A. Bella, On spaces with the property of weak approximation by points, Comment. Math. Univ. Carolinae 35(2) (1994), 357-360.

3.
A. Bella and I. V. Yaschenko, On AP and WAP spaces, Comment. Math. Univ. Carolinae 40(3) (1999), 531-536.

4.
M. H. Cho, J. Kim and M. A. Moon, Examples and functions around AP and WAP spaces, Commun. Korean. Math. Soc. 23(3) (2008), 447-452. crossref(new window)

5.
J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1970.

6.
S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115.

7.
S. P. Franklin, Spaces in which sequences suffice II, Fund. Math. 61 (1967), 51-56.

8.
W. C. Hong, Generalized Frechet-Urysohn spaces, J. Korean Math. Soc. 44(2) (2007), 261-273. crossref(new window)

9.
W. C. Hong, On spaces in which compact-like sets are closed, and related spaces, Commun. Korean. Math. Soc. 22(2) (2007), 297-303. crossref(new window)

10.
W. C. Hong, On spaces which have countable tightness and related spaces, Honam Math. J. 34(2) (2012), 199-208. crossref(new window)

11.
J. Penlant, M. G. Tkachenko, V. V. Tkachuk, and R. G. Wilson, Pseudocompact Whyburn spaces need not be Frechet, Proc. Amer. Math. Soc. 131(10) (2002), 3257-3265.

12.
L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Springer-Verlag, Berlin, 1978.

13.
V. V. Tkachuk and I. V. Yaschenko, Almost closed sets and topologies they de-termine, Comment. Math. Univ. Carolinae 42(2) (2001), 395-405.

14.
J. E. Vaughan, Countably compact and sequentially compact spaces, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, New York, Oxford (1984), 569-602.

15.
A. Wilansky, Topology for Analysis, Ginn and Company, 1970.