JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOPOLOGICAL PROPERTIES OF GRAPHICAL ARRANGEMENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.435-454
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.435
 Title & Authors
TOPOLOGICAL PROPERTIES OF GRAPHICAL ARRANGEMENTS
Nguyen, Thi A.; Kim, Sangwook;
  PDF(new window)
 Abstract
We show that for any graph G, the proper part of the intersection poset of the corresponding graphical arrangement has the homotopy type of a wedge of spheres. Furthermore, we also indicate the number of spheres in the wedge, based on the number of spanning forests of G and other graphs that are obtained from G.
 Keywords
graphical arrangement;EL-shallablity;
 Language
English
 Cited by
 References
1.
Anders Bjorner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260(1) (1980), 159-183. crossref(new window)

2.
Anders Bjorner and Michelle L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4) (1996), 1299-1327. crossref(new window)

3.
Curtis Greene and Thomas Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc., 280(1) (1983), 97-126. crossref(new window)

4.
Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math., 56(2) (1980), 167-189. crossref(new window)

5.
Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, volume 300 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1992.

6.
Richard P. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), 197-217. crossref(new window)

7.
Richard P. Stanley, Finite lattices and Jordan-Holder sets, Alg. Univ., 4 (1974), 361-371. crossref(new window)

8.
Richard P. Stanley, Enumerative Combinatorics, vol 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999.

9.
Richard P. Stanley, An introduction to hyperplane arrangements, In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 389-496. Amer. Math. Soc., Providence, RI, 2007.

10.
Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., 1(issue 1, 154):vii+102, 1975.

11.
Michelle L. Wachs, A basis for the homology of the d-divisible partition lattice, Adv. Math., 117(2) (1996), 294-318. crossref(new window)

12.
Michelle L. Wachs, Poset topology: tools and applications, In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 497-615. Amer. Math. Soc., Providence, RI, 2007.