JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 2,  2014, pp.455-465
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.2.455
 Title & Authors
CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES
Choi, Junesang; Agarwal, Praveen;
  PDF(new window)
 Abstract
In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.
 Keywords
integral inequalities;extended Chebyshev functional;Riemann-Liouville fractional integral operator;Erdlyi-Kober fractional integral operator;pathway fractional integral operator;
 Language
English
 Cited by
1.
A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR, Communications of the Korean Mathematical Society, 2015, 30, 2, 81  crossref(new windwow)
2.
Certain recent fractional integral inequalities associated with the hypergeometric operators, Journal of King Saud University - Science, 2016, 28, 1, 82  crossref(new windwow)
 References
1.
G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, 2011.

2.
D. Baleanu, S. D. Purohit and P. Agarwal, On fractional integral inequalities involving hypergeometric operators, Chinese J. Math. 2014 (2014), Article ID 609476, 5 pages.

3.
D. Baleanu and P. Agarwal, Certain inequalities involving the fractional q-integral operators, Abst. Appl. Anal., 2014, in press.

4.
S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10(3) (2009), Art. 86, 5 pp (electronic).

5.
P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.

6.
J. Choi and P. Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abst. Appl. Anal. 2014 (2014), Article ID 579260, 11 pages.

7.
J. Choi and P. Agarwal, Certain inequalities involving pathway fractional integral operators, submitted.

8.
J. Choi and P. Agarwal, Certain fractional integral inequalities involving hypergeometric operators, East Asian Math. J. 30 (2014), in press.

9.
Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (2010), 493-497.

10.
Z. Dahmani, O. Mechouar and S. Brahami, Certain inequalities related to the Chebyshev's functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl. 3(4) (2011), 38-44.

11.
S. S. Dragomir, Some integral inequalities of Gruss type, Indian J. Pure Appl. Math. 31(4) (2000), 397-415.

12.
S. L. Kalla and A. Rao, On Gruss type inequality for hypergeometric fractional integrals, Matematiche (Catania) 66(1) (2011), 57-64.

13.
J. C. Kuang, Applied Inequalities, Shandong Sciences and Technologie Press, 2004 (Chinese).

14.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland Mathematics Studies 204, Amsterdam, London, New York, and Tokyo, 2006.

15.
V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11 (2007), 395-402.

16.
A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl. 396 (2005), 317-328. crossref(new window)

17.
A. M. Mathai and H. J. Haubold, On generalized distributions and path-ways, Phys. Lett. A 372 (2008), 2109-2113. crossref(new window)

18.
A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, Phys. A 375 (2007), 110-122. crossref(new window)

19.
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.

20.
S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal. 12(3) (2009), 237-252.

21.
H. Ogunmez and U.M. Ozkan, Fractional quantum integral inequalities, J. Inequal. Appl. 2011, Article ID 787939, 7 pp.

22.
A. M. Ostrowski, On an integral inequality, Aequations Math. 4 (1970), 358-373. crossref(new window)

23.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

24.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

25.
W. T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal. 2(2) (2011), 23-28.