JOURNAL BROWSE
Search
Advanced SearchSearch Tips
JORDAN HIGHER CENTRALIZERS ON SEMIPRIME RINGS AND RELATED MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 3,  2014, pp.505-517
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.3.505
 Title & Authors
JORDAN HIGHER CENTRALIZERS ON SEMIPRIME RINGS AND RELATED MAPPINGS
Jung, Yong-Soo;
  PDF(new window)
 Abstract
We prove that every Jordan higher left (right) centralizer on a 2-torsion free semiprime ring is a higher left (right) centralizer which is to generalize the result of Zalar [18].
 Keywords
semiprime ring;higher left (right) centralizer;Jordan higher left (right) centralizer;higher derivations;Jordan higher derivations;generalized higher derivations;generalized Jordan higher derivations;
 Language
English
 Cited by
 References
1.
M. Ashraf, N. Rehman and S. Ali, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25(3) (2001), 379-382. crossref(new window)

2.
M. Ashraf and N. Rehman and Shakir Ali, On Lie ideals and Jordan generalized derivations of prime rings, Indian J. pure appl. Math. 34(2) (2003), 291-294.

3.
M. Bresar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93. crossref(new window)

4.
M. Bresar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218-228. crossref(new window)

5.
M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. crossref(new window)

6.
M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 10 (1990), 7-16.

7.
W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turkish J. Math. 29 (2005), 1-10.

8.
Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1997), 145-147.

9.
M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaestiones Mathematicae 25(2) (2002), 249-257. crossref(new window)

10.
I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. crossref(new window)

11.
B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4) (1998), 1147-1166. crossref(new window)

12.
W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7(4) (2003), 605-613.

13.
P. Ribenboim, Higher order derivations of modules, Portgaliae Math. 39 (1980), 381-397.

14.
M. A. Quadri, M. Shadab Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34(9) (2003), 1393-1396.

15.
J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1-6.

16.
J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11(2) (2007), 367-370.

17.
F. Wei and Z. Xiao, Generalized Jordan triple higher derivations on rings, B. Korean Math. Soc. 46(3) (2009), 553-565 . crossref(new window)

18.
B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32(4) (1991), 609-614.