JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE INCOMPLETE LAURICELLA AND FIRST APPELL FUNCTIONS AND ASSOCIATED PROPERTIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 3,  2014, pp.531-542
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.3.531
 Title & Authors
THE INCOMPLETE LAURICELLA AND FIRST APPELL FUNCTIONS AND ASSOCIATED PROPERTIES
Choi, Junesang; Parmar, Rakesh K.; Chopra, Purnima;
  PDF(new window)
 Abstract
Recently, Srivastava et al. [18] introduced the incomplete Pochhammer symbol and studied some fundamental properties and characteristics of a family of potentially useful incomplete hypergeometric functions. Here we introduce the incomplete Lauricella function and of n variables, and investigate certain properties of the incomplete Lauricella functions, for example, their various integral representations, differential formula and recurrence relation, in a rather systematic manner. Some interesting special cases of our main results are also considered.
 Keywords
Gamma functions;incomplete gamma function;Pochhammer symbol;incomplete Pochhammer symbol;incomplete generalized hypergeometric functions;Lauricella functions;Appell function;Bessel and modified Bessel functions;incomplete first Appell function;incomplete Lauricella function of n variables;
 Language
English
 Cited by
1.
THE INCOMPLETE GENERALIZED τ-HYPERGEOMETRIC AND SECOND τ-APPELL FUNCTIONS, Journal of the Korean Mathematical Society, 2016, 53, 2, 363  crossref(new windwow)
 References
1.
M. Abramowitz, I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Tenth Printing, National Bureau of Standards, Applied Mathematics Series 55, Washington, DC, 1972; Reprinted by Dover Publications, New York, 1965.

2.
L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Company, New York, 1984.

3.
W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935; Reprinted by Stechert Hafner, New York, 1964.

4.
B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, San Francisco and London, 1977.

5.
A. Cetinkaya, The incomplete second Appell hypergeometric functions, Appl. Math. Comput. 219 (2013), 8332-8337. crossref(new window)

6.
M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, (CRC Press Company), Boca Raton, London, New York and Washington, D. C., 2001.

7.
A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.

8.
A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1953.

9.
A. A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.

10.
Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York, San Francisco and London, 1975.

11.
W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berucksichtingung der Anwendungsgebiete, Bd. 52, Springer-Verlag, Berlin, Heidelberg and New York, 1966.

12.
K. B. Oldham, J. Myland and J. Spanier, An Atlas of Functions, With Equator, The Atlas Function Calculator, Second edi. [With 1 CD-ROM (Windows)], Springer, Berlin, Heidelberg and New York, 2009.

13.
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Functions [With 1 CD-ROM (Windows, Macintosh and UNIX)], US Department of Commerce, National Institute of Standards and Technology, Washington, DC, 2010; Cambridge University Press, Cambridge, London and New York, 2010.

14.
A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. II, Gordon and Breach Science Publishers, New York, 1990.

15.
E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.

16.
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, London, and New York, 1960.

17.
L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London, and New York, 1966.

18.
H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), 659-683. crossref(new window)

19.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer, Acedemic Publishers, Dordrecht, Boston and London, 2001.

20.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Publishers, Amsterdam, London and New York, 2012.

21.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

22.
H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press, (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.

23.
N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1996.

24.
G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York, 1944.

25.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth edition, Cambridge University Press, Cambridge, London and New York, 1963.