JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A CLASS OF GORENSTEIN IDEALS OF GRADE FOUR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 3,  2014, pp.605-622
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.3.605
 Title & Authors
ON A CLASS OF GORENSTEIN IDEALS OF GRADE FOUR
Cho, Yong S.;
  PDF(new window)
 Abstract
We provide a minimal free resolution for a class of Gorenstein ideal of grade 4 which is the sum of an almost complete intersection J of grade 3 and a perfect ideal I of grade 3 with type 2 and > 0 geometrically linked by a regular sequence, where I is generated by odd elements.
 Keywords
almost complete intersection of grade 3;linkage;minimal free resolution;Gorenstein ideal;
 Language
English
 Cited by
 References
1.
H. Bass, On the ubiquity of Gorenstein rings, Math. Z 82 (1963), 8-28. crossref(new window)

2.
A. Brown, A Structure Theorem for a Class of Grade Three Perfect Ideals, J. Algebra 105 (1987), 308-327. crossref(new window)

3.
D. A. Buchsbaum and D. Eisenbud, What makes the complex exact?, J. Algebra 25 (1973), 259-268. crossref(new window)

4.
D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Amer. J. Math. 99(3) (1977), 447-485. crossref(new window)

5.
Eun Jeong Choi, Oh-Jin Kang, and Hyoung J. Ko, On the structure of the grade three perfect ideals of type three, Commun. Korean Math. Soc. 23(4) (2008), 487-497. crossref(new window)

6.
Yong S. Cho, Oh-Jin Kang, and Hyoung J. Ko, Perfect ideals of grade three defined by skew-symmetrizable matrices, Bull. Korean Math. Soc. 49(4) (2012), 715-736.

7.
Yong S. Cho, A structure theorem for a class of Gorenstein ideals of grade four, Honam Mathematical J. 36(2) (2014), 387-398. crossref(new window)

8.
E. S. Golod, A note on perfect ideals, from the collection "Algebra" (A. I. Kostrikin,Ed), Moscow State Univ. Publishing House (1980), 37-39.

9.
Oh-Jin Kang and Hyoung J. Ko, The structure theorem for Complete Intersections of grade 4, Algebra Collo. 12(2) (2005), 181-197. crossref(new window)

10.
Oh-Jin Kang, Yong S. Cho and Hyoung J. Ko, Structure theory for some classes of grade 3 perfect ideals, J. Algebra 322 (2009), 2680-2708. crossref(new window)

11.
A. Kustin and M. Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), 287-307. crossref(new window)

12.
C. Peskine and L. Szpiro, Liaison des varietes algebriques, Invent. Math. 26 (1974), 271-302 crossref(new window)

13.
R. Sanchez, A Structure Theorem for Type 3, Grade 3 Perfect Ideals, J. Algebra 123 (1989), 263-288. crossref(new window)