JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE GREEN FUNCTION AND THE SZEGŐ KERNEL FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 3,  2014, pp.659-668
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.3.659
 Title & Authors
THE GREEN FUNCTION AND THE SZEGŐ KERNEL FUNCTION
Chung, Young-Bok;
  PDF(new window)
 Abstract
In this paper, we express the Green function in terms of the classical kernel functions in potential theory. In particular, we obtain a formula relating the Green function and the Szegő kernel function which consists of only the Szegő kernel function in a smoothly bounded finitely connected domain in the complex plane.
 Keywords
Green function;Szego kernel;Ahlfors map;Dirichlet problem;
 Language
English
 Cited by
 References
1.
S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39(4) (1990), 1355-1371. crossref(new window)

2.
Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64(1) (1991), 1-26. MR MR1131391 (93e:30018) crossref(new window)

3.
Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64(1) (1991), 1-26. crossref(new window)

4.
Steven R. Bell, Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329-344. MR 1714417 (2000m:30012) crossref(new window)

5.
Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439 (12, 402a)

6.
P. R. Garabedian, Schwarz's lemma and the Szego kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35.