JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUNCTIONS ON κ-NET CONVERGENCE STRUCTURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 3,  2014, pp.669-678
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.3.669
 Title & Authors
FUNCTIONS ON κ-NET CONVERGENCE STRUCTURES
Cho, Myung Hyun; Kim, Junhui; Moon, Mi Ae;
  PDF(new window)
 Abstract
We investigate various properties of -net convergence structures and define a -net-based continuous function on -net -convergence structures, and study relationships between continuity and -net-based continuity on -net -convergence structures. We also provide some characterizations of -net-based continuity.
 Keywords
-net;-Frchet;-net space;sequentially continuous;-net-based continuous;
 Language
English
 Cited by
 References
1.
A. V. Arkhangel'skii and L. S. Pontryagin, General Topology I, Springer-Verlag, 1990.

2.
R. M. Dudley, On sequential convergence, Trans. Amer. Math. Soc. 112 (1964), 483-507. crossref(new window)

3.
R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.

4.
R. Fric, History of Sequential Convergence Spaces, Handbook of the History of General Topology, Vol. 1, 343-355, Kluwer Acad. Publ., Dordrecht, 1997.

5.
H. Herrlich and G. Strecker, Categorical Topology its origins, as exemplified by the unfolding of the theory of topological reflections and coreflections before 1971, Handbook of the history of general topology, Vol. 1, 255-341, Kluwer Acad. Publ., Dordrecht, 1997.

6.
R. E. Hodel, A Theory of Convergence and Cluster Points Based on ${\kappa}$-nets, Topology Proc. 35 (2010), 291-330.

7.
J. Kisynski, Convergence du Type L, Colloq. Math. 7 (1960), 205-211.