JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UTILITY OF DIGITAL COVERING THEORY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 3,  2014, pp.695-706
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.3.695
 Title & Authors
UTILITY OF DIGITAL COVERING THEORY
Han, Sang-Eon; Lee, Sik;
  PDF(new window)
 Abstract
Various properties of digital covering spaces have been substantially used in studying digital homotopic properties of digital images. In particular, these are so related to the study of a digital fundamental group, a classification of digital images, an automorphism group of a digital covering space and so forth. The goal of the present paper, as a survey article, to speak out utility of digital covering theory. Besides, the present paper recalls that the papers [1, 4, 30] took their own approaches into the study of a digital fundamental group. For instance, they consider the digital fundamental group of the special digital image (X, 4), where X :
 Keywords
digital topology;digital product;k-homotopic thinning;normal adjacency;S-compatible adjacency;digital covering space;C-property;S-property;
 Language
English
 Cited by
1.
COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT,;

호남수학학술지, 2015. vol.37. 1, pp.135-147 crossref(new window)
1.
COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT, Honam Mathematical Journal, 2015, 37, 1, 135  crossref(new windwow)
 References
1.
R. Ayala, E. Domnguez, A.R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Applied Math, 125(1) (2003), 3-24. crossref(new window)

2.
C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976.

3.
L. Boxer, Digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839. crossref(new window)

4.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10 (1999), 51-62. crossref(new window)

5.
L. Boxer and Ismet Karaca, The Classification of Digital Covering Spaces, Jour. of Mathematical Imaging and Vision, 32 (2008), 23-29. crossref(new window)

6.
S.E. Han, On the classification of the digital images up to digital homotopy equivalence, Jour. Comput. Commun. Res. 10 (2000), 207-216.

7.
S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1) (2003), 153-162.

8.
S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing, 18(1-2) (2005), 487-495.

9.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005), 73-91. crossref(new window)

10.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal, 27(1) (2005), 115-129.

11.
S.E. Han, The k-fundamental group of a computer topological product space, preprint (2005), 1-22.

12.
S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag, Berlin, (2006), 214-225.

13.
S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society, 44(6) (2007), 1479-1503. crossref(new window)

14.
S.E. Han, Comparison among digital fundamental groups and its applications, Information Sciences, 178 (2008), 2091-2104. crossref(new window)

15.
S.E. Han, Equivalent ($k_0$, $k_1$)-covering and generalized digital lifting, Information Sciences, 178(2) (2008), 550-561. crossref(new window)

16.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision, 31(1) (2008), 1-16. crossref(new window)

17.
S.E. Han, Cartesian product of the universal covering property, Acta Applicandae Mathematicae, 108 (2009), 363-383. crossref(new window)

18.
S.E. Han, Remark on a generalized universal covering space, Honam Mathematical Jour. 31(3) (2009), 267-278. crossref(new window)

19.
S.E. Han, KD-($k_0$, $k_1$)-homotopy equivalence and its applications, Journal of Korean Mathematical Society, 47(5) (2010), 1031-1054. crossref(new window)

20.
S.E. Han, Multiplicative property of the digital fundamental group, Acta Applicandae Mathematicae, 110(2) (2010), 921-944. crossref(new window)

21.
S.E. Han, Ultra regular covering space and its automorphism group, International Journal of Applied Mathematics & Computer Science, 20(4) (2010), 699-710.

22.
S.E. Han, Study on topological spaces with the semi-$T_{1/2}$ separation axiom, Honam Mathematical Journal, 35(4) (2013), 707-716. crossref(new window)

23.
S.E. Han, An equivalent property of a normal adjacency of a digita product, Honam Mathematical Journal, 36(3) (2014), 199-215. crossref(new window)

24.
S.E. Han, Remarks on simply k-connectivity and k-deformation retract in digital topology, Honam Mathematical Journal, 36(3) (2014), accepted. crossref(new window)

25.
S.E. Han and Sik Lee, Remarks on digital products with normal adjacency relations, Honam Mathematical Journal, 35(3) (2013), 515-424. crossref(new window)

26.
S.E. Han and B.G. Park, Digital graph ($k_0$, $k_1$)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm (2003).

27.
S.E. Han and B.G. Park, Digital graph ($k_0$, $k_1$)-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm (2003).

28.
In-Soo Kim, S.E. Han, Digital covering therory and its applications, Honam Mathematical Journal, 30(4) (2008), 589-602. crossref(new window)

29.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics, (1987), 227-234.

30.
T.Y. Kong, A digital fundamental group, Computers and Graphics, 13 (1989), 159-166. crossref(new window)

31.
T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

32.
R. Malgouyres, Homotopy in 2-dimensional digital images, Theoretical Computer Science, 230 (2000), 221-233. crossref(new window)

33.
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986), 177-184. crossref(new window)