JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GEOMETRY OF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KENMOTSU MANIFOLD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.707-722
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.707
 Title & Authors
GEOMETRY OF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KENMOTSU MANIFOLD
Jin, Dae Ho;
  PDF(new window)
 Abstract
In this paper, we study the forms of the curvatures of lightlike submanifolds M of an indefinite Kenmotsu manifold subject to the conditions: M is locally symmetric or M is semi-symmetric.
 Keywords
locally symmetric;semi-symmetric;lightlike submanifold;indefinite Kenmotsu manifold;
 Language
English
 Cited by
 References
1.
C. Calin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania, 1998).

2.
K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Man-ifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

3.
K.L. Duggal and D.H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), 49-68. crossref(new window)

4.
K.L. Duggal and D.H. Jin, Generic lightlike submanifolds of an indefinite Sasakian manifold, Int. Elec. J. of Geo. 5(1) (2012), 108-119.

5.
D.H. Jin, The curvatures of lightlike hypersurfaces in an indefinite Kenmotsu manifold, Balkan J. of Geo. and Its Appl. 17(1) (2012), 49-57.

6.
D.H. Jin, Locally symmetric half lightlike submanifolds in an indefinite Kenmotsu manifold, Commun. Korean Math. Soc. 27(3) (2012), 583-589. crossref(new window)

7.
D.H. Jin, Non-existence of totally geodesic screen distributions on lightlike hyper-surfaces of indefinite Kenmotsu manifolds, Commun. Korean Math. Soc. 28(2) (2013), 353-360. crossref(new window)

8.
D.H. Jin, Non-existence of screen homothetic half lightlike submanifolds of an indefinite Kenmotsu manifold, Balkan J. of Geo. and Its Appl. 18(1) (2013), 22-30.

9.
K. Kenmotsu, A class of almost contact Riemannian manifolds, Tbohoku Math. J. 21 (1972), 93-103.

10.
D.N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Appli-cations, Kluwer Acad. Publishers, Dordrecht, 1996.