JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TRANSVERSE KILLING FORMS ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.731-737
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.731
 Title & Authors
TRANSVERSE KILLING FORMS ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS
Jung, Seoung Dal;
  PDF(new window)
 Abstract
In this article, we study the transverse Killing forms with finite global norms on complete foliated Riemannian manifolds.
 Keywords
transverse Killing form;transversal Killing vector field;
 Language
English
 Cited by
1.
$$L^\mathrm{2}$$ L 2 -transverse conformal Killing forms on complete foliated manifolds, Mathematische Zeitschrift, 2017  crossref(new windwow)
 References
1.
J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194. crossref(new window)

2.
T. Aoki and S. Yorozu, $L^2$-transverse conformal and Killing fields on complete foliated Riemannian manifolds, Yokohama Math. J. 36 (1988), 27-41.

3.
P. Berard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), 261-266. crossref(new window)

4.
S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), 253-264. crossref(new window)

5.
S. D. Jung, Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, J. Geom. Phys. 57 (2007), 1239- 1246. crossref(new window)

6.
M. J. Jung and S. D. Jung, Liouville type theorem for transversally harmonic maps, arXiv:1307.3627v2[math.DG] 29 Aug 2014.

7.
S. D. Jung and M. J. Jung, Transverse Killing forms on a Kahler foliation, Bull. Korean Math. Soc. 49 (2012), 445-454. crossref(new window)

8.
S. D. Jung and K. Richardson, Transverse conformal Killing forms and a Gallot-Meyer theorem for foliations, Math. Z. 270 (2012), 337-350. crossref(new window)

9.
F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), 525-538. crossref(new window)

10.
F. W. Kamber and Ph. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), 415-431. crossref(new window)

11.
T. Kashiwada, On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67-74.

12.
T. Kashiwada and S. Tachibana, On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21 (1969), 259-265. crossref(new window)

13.
P. Molino, Riemannian foliations, translated from the French by Grant Cairns, Boston: Birkhaser, 1988.

14.
S. Nishikawa and Ph. Tondeur, Transversal infinitesimal automorphisms of harmonic foliations on complete manifolds, Anal. Global Anal. Geom. 7 (1989), 47-57. crossref(new window)

15.
J. S. Pak and S. D. Jung, A transversal Dirac operator and some vainshing theorems on a complete foliated Riemannian manifold, Math. J. Toyama Univ. 16 (1993), 97-108.

16.
J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25 (1988), 83-92.

17.
E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), 1249-1275. crossref(new window)

18.
Ph. Tondeur, Geometry of foliations, Basel: Birkhauser Verlag, 1997.

19.
K. Yano, Some remarks on tensor fields and curvature, Ann. Math. 55 (1952), 328-347. crossref(new window)

20.
S. Yorozu, Conformal and Killing vector fields on complete non-compact Riemannian manifolds, Geometry of geodesics and related topics, Advanced Studies in Pure Mathematics 3 (1984).

21.
S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc. 84 (1982), 115-120.

22.
S. Yorozu, The non-existence of Killing fields, Tohoku Math. J. 36 (1984), 99-105. crossref(new window)