JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.755-766
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.755
 Title & Authors
OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD
Kim, Seung Soo; Lee, Yong Hun; Oh, Eun Jung;
  PDF(new window)
 Abstract
In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.
 Keywords
Steepest descent method;Legendre spectral method;bubble-stabilization;advection-diffusion equation;
 Language
English
 Cited by
1.
LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD, Honam Mathematical Journal, 2016, 38, 1, 47  crossref(new windwow)
 References
1.
A.N.T. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convected dominated flows with a particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), 199-259. crossref(new window)

2.
C. Baiocchi, F. Brezzi and L.P. Franca, Virtual bubbles and Galerkin-leastsquares type methods, Comput. Methods. Appl. Mech. Engrg. 105 (1993), 125-142. crossref(new window)

3.
F. Brezzi, M.-O. Bristeau, L.P. Franca, M. Mallet and G. Roge, A relationship between stabilized finite element methods and the Galerkin Method with bubble functions, Comput. Methods. Appl. Mech. Engrg. 96 (1992), 117-130. crossref(new window)

4.
C. Canuto, Spectral methods and a maximum principle, Math. Comp. 51 (1988), 615-629. crossref(new window)

5.
C. Canuto, Stabilization of spectral methods by finite element bubble functions, in: C. Beranrdi and Y. Maday, eds., Proc. ICOSAHOM '92 Conf., Montpellier, 1992 (North-Holland, Amsterdam, 1994); also: Comput. Methods Appl. Mech. Engrg. 116 (1994), 13-26.

6.
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Flid Dynamics, Springer-Verlag, Berlin, 2007.

7.
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.

8.
C. Canuto and G. Puppo, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, Comput. Methods Appl. Mech. Engr. 118 (1994), 239-263. crossref(new window)

9.
S.D. Kim, Piecewise bilinear preconditioning of high-order finite element methods, Electron. Trans. Numer. Anal. 26 (2007), 228-242.

10.
S. Kim and S.D. Kim, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto nodes, Applied. Numer. Math. 59 (2009), 316-333. crossref(new window)

11.
S.D. Kim and S. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal. 33 (1996), 2375-2400. crossref(new window)

12.
J.H. Lee, Bubble Stabilization of Chebyshev Spectral Method for Advection-Diffusion Equation, Ph.D. Thesis, KAIST, Korea (1988).

13.
H. Ma, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal. 35 (1998), 869-892. crossref(new window)

14.
W. Sun and Y. Yuan, Optimization Theory and Methods. Nonlinear Programming, Springer-Verlag, 2006.