JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON CONDITIONAL BOREL-CANTELLI LEMMA UNDER PAIRWISE EXTENDED CONDITIONAL NEGATIVE QUADRANT DEPENDENCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.767-775
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.767
 Title & Authors
ON CONDITIONAL BOREL-CANTELLI LEMMA UNDER PAIRWISE EXTENDED CONDITIONAL NEGATIVE QUADRANT DEPENDENCE
Kim, Hyun-Chull;
  PDF(new window)
 Abstract
In this paper we define the extended conditional negative quadrant dependence and generalize the conditional Borel-Cantelli lemma of B.L.S. Prakasa Rao(2012) to the case of pairwise extended conditionally negative quadrant dependence.
 Keywords
conditional Borel-Cantelli lemma;extended conditional negative quadrant dependence;lim sup;negative quadrant dependence;
 Language
English
 Cited by
 References
1.
Chung, K.L. and Erdos, P., On the application of the Borel-Cantelli lemma, Trans. Amer. Math. Soc. 72 (1952), 179-186. crossref(new window)

2.
Block, H.W., Savits, T.H. and Shaked, M., Some concepts of negative dependence, Ann. Probab. 10 (1982), 765-772. crossref(new window)

3.
Erdos, P. and Renyi, A., On cantor's series with convergent ${\sum}\frac{1}{q}$, Ann. Univ. Sci. Poudapest Sect. Math. 2 (1959), 93-109.

4.
Lehmann. E.L., Some concepts of dependence, Ann. Math. Stat. 37 (1966), 1137-1153. crossref(new window)

5.
Majerak, D., Newak, W. and Zieba, W., Conditional strong law of large number, Inter. J. Pure. Appl. Math. 20 (2005), 143-157.

6.
Petrov, V.V., A note on the Borel-Cantelli lemma, Statist. Probab. Lett. 58 (2002), 283-286. crossref(new window)

7.
B.L.S. Prakasa Rao, Conditional independence, conditional mixing and conditional association, Ann. Statist. Math. 61 (2009), 441-460. crossref(new window)

8.
B.L.S. Prakasa Rao, Upper and lower bounds for probabilities in the conditinal Borel-Cantelli lemma, Stoch. Anal. Appl. 28 (2010), 144-156.