JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.805-812
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.805
 Title & Authors
REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES
Cho, Jong Taek; Chun, Sun Hyang;
  PDF(new window)
 Abstract
For unit tangent sphere bundles with the standard contact metric structure (), we have two fundamental operators that is, $h
 Keywords
unit tangent sphere bundle;contact metric structure;characteristic Jacobi operator;
 Language
English
 Cited by
 References
1.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.

2.
D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, Singapore 509 (1989), 15-30.

3.
E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.

4.
E. Boeckx, D. Perrone and L. Vanhecke, Unit tangent sphere bundles and twopoint homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79-95. crossref(new window)

5.
J. T. Cho and S. H. Chun, On the classi cation of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99-113.

6.
E. Boeckx, J. T. Cho and S. H. Chun, Flow-invariant structures on unit tangent bundles, Publ. Math. Debrecen 70 (2007), 167-178.

7.
P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.

8.
A. Gray, Classification des varietes approximativement kahleriennes de courbure sectionelle holomorphe constante, J. Reine Angew. Math. 279 (1974), 797-800.

9.
O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.

10.
P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320. crossref(new window)

11.
Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143. crossref(new window)

12.
L. Vanhecke and T. J. Willmore, Interactions of tubes and spheres, Math. Anal. 21 (1983), 31-42.

13.
K. Yano and S. Ishihara, Tangent and cotangent bundles, M. Dekker Inc. 1973.