JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HESITANT FUZZY SET THEORY APPLIED TO FILTERS IN MTL-ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.813-830
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.813
 Title & Authors
HESITANT FUZZY SET THEORY APPLIED TO FILTERS IN MTL-ALGEBRAS
Jun, Young Bae; Song, Seok-Zun;
  PDF(new window)
 Abstract
The notions of a (Boolean, prime, ultra, good) hesitant fuzzy filter and a hesitant fuzzy MV -filter of an MTL-algebras are introduced, and their relations are investigated. Characterizations of a (Boolean, ultra) hesitant fuzzy filter are discussed. Conditions for a hesitant fuzzy set to be a hesitant fuzzy filter, and for a hesitant fuzzy filter to be a Boolean hesitant fuzzy filter are provided.
 Keywords
MTL-algebra;hesitant fuzzy set;(Boolean, prime, ultra, good) hesitant fuzzy filter;
 Language
English
 Cited by
1.
HESITANT FUZZY BI-IDEALS IN SEMIGROUPS,;;;

대한수학회논문집, 2015. vol.30. 3, pp.143-154 crossref(new window)
1.
Hesitant fuzzy semigroups with a frontier, Journal of Intelligent & Fuzzy Systems, 2016, 30, 3, 1613  crossref(new windwow)
2.
HESITANT FUZZY SEMIGROUPS WITH TWO FRONTIERS, Communications of the Korean Mathematical Society, 2016, 31, 1, 17  crossref(new windwow)
3.
HESITANT FUZZY BI-IDEALS IN SEMIGROUPS, Communications of the Korean Mathematical Society, 2015, 30, 3, 143  crossref(new windwow)
4.
Hesitant fuzzy translations and extensions of subalgebras and ideals in BCK/BCI-algebras, Journal of Intelligent & Fuzzy Systems, 2016, 1  crossref(new windwow)
5.
Subalgebras and Ideals of BCK/BCI-Algebras in the Frame-work of the Hesitant Intersection, Kyungpook mathematical journal, 2016, 56, 2, 371  crossref(new windwow)
 References
1.
R. A. Borzooei, S. Khosravi Shoar and R. Americ, Some types of lters in MTL-algebras, Fuzzy Sets and Systems 187 (2012), 92-102. crossref(new window)

2.
F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (2001), 271-288. crossref(new window)

3.
P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Press, Dordrecht, 1998.

4.
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529-539.

5.
E. Turunen, BL-algebras of basic fuzzy logic, Mathware & Soft Computing 6 (1999), 49-61.

6.
Z. Xu and M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. 181 (2011), 2128-2138. crossref(new window)