JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UNITARY INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG𝓛
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 4,  2014, pp.907-911
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.4.907
 Title & Authors
UNITARY INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG𝓛
Kang, Joo Ho;
  PDF(new window)
 Abstract
Given vectors x and y in a separable complex Hilbert space , an interpolating operator is a bounded operator A such that Ax = y. We show the following: Let be a tridiagonal algebra on and let and be vectors in . Then the following are equivalent: (1) There exists a unitary operator in such that Ax = y. (2) There is a bounded sequence in such that and for .
 Keywords
unitary interpolation;CSL-algebra;tridiagonal algebra;;
 Language
English
 Cited by
 References
1.
Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 Birkhauser, Basel, (1981), 105-120.

2.
Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126. crossref(new window)

3.
Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33(4) (1989), 657-672.

4.
Jo, Y. S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115. crossref(new window)

5.
Jo, Y. S. and Choi, T. Y., Isomorphisms of $AlgL_n$ and $AlgL_{\infty}$, Michigan Math. J. 37 (1990), 305-314. crossref(new window)

6.
Jo, Y. S., Joo Ho Kang, Park, Dongwan, Equations AX = Y and Ax = y in AlgL, J. Korean Math. Soc. 43 (2006), 399-411. crossref(new window)

7.
Katsoulis, E., Moore, R. L., Trent, T. T., Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory 29 (1993), 115-123.

8.
Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.

9.
Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc. 19(3) (1969), 45-68.

10.
Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418. crossref(new window)