JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUM AND PRODUCT THEOREMS OF RELATIVE TYPE AND RELATIVE WEAK TYPE OF ENTIRE FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 1,  2015, pp.65-97
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.1.65
 Title & Authors
SUM AND PRODUCT THEOREMS OF RELATIVE TYPE AND RELATIVE WEAK TYPE OF ENTIRE FUNCTIONS
Choi, Junesang; Datta, Sanjib Kumar; Biswas, Tanmay; Sen, Pulakesh;
  PDF(new window)
 Abstract
Orders and types of entire functions have been actively investigated by many authors. In this paper, we aim at investigating some basic properties in connection with sum and product of relative type and relative weak type of entire functions.
 Keywords
Entire functions;Relative order (relative lower order);Relative type (relative lower type);Relative weak type;Regular relative growth;
 Language
English
 Cited by
1.
Sum and product theorems depending on the (p, q)-th order and (p, q)-th type of entire functions, Cogent Mathematics, 2015, 2, 1  crossref(new windwow)
 References
1.
L. Bernal, Crecimiento relativo de funciones enteras. Contribucion al estudio de lasfunciones enteras con indice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.

2.
L. Bernal, Orden relative de crecimiento de funciones enteras, Collect. Math. 39 (1988), 209-229.

3.
S. K. Datta and A. Jha, On the weak type of meromorphic functions, Int. Math. Forum 4(12) (2009), 569-579.

4.
S. K. Datta , T. Biswas and R. Biswas, Some results on relative lower order of entire functions, Casp. J. Appl. Math. Ecol. Econ. 1(2) (2013), 3-18.

5.
S. K. Datta and A. Biswas, On relative type of entire and meromorphic functions, Adv. Appl. Math. Anal. 8(2) (2013), 63-75.

6.
S. K. Datta , T. Biswas and P. Sen, Some extensions of sum and products theorems on relative order and relative lower order of entire functions, Int. J. Pure Appl. Math., accepted for publication.

7.
W. K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.

8.
S. Halvarsson, Growth properties of entire functions depending on a parameter, Ann. Polon. Math. 14(1) (1996), 71-96.

9.
A. S. B. Holland, Introduction to the Theory of Entire Functions, Academic Press, New York, London, 1973.

10.
C. O. Kiselman, Order and type as measure of growth for convex or entire functions, Proc. Lond. Math. Soc. 66(3) (1993), 152-186.

11.
C. O. Kiselman, Plurisubharmonic functions and potential theory in several complex variable, a contribution to the book project, Development of Mathematics, 1950-2000, edited by Hean-Paul Pier.

12.
B. Ya. Levin, Lectures on Entire Functions, in collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko; translated from the Russian manuscript by Tkachenko, Translations of Mathematical Monographs 150, American Mathematical Society, Providence, RI, 1996.

13.
B. K. Lahiri and D. Banerjee, Generalised relative order of entire functions, Proc. Nat. Acad. Sci. India 72(A)(IV) (2002), 351-371.

14.
B. K. Lahiri and D. Banerjee, Entire functions of relative order (p, q), Soochow J. Math. 31(4) (2005), 497-513.

15.
C. Roy, Some properties of entire functions in one and several complex vaiables, Ph.D. Thesis, University of Calcutta, 2010.

16.
E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press, Oxford, 1968.

17.
G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, 1949.