JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RASMUSSEN INVARIANTS OF SOME 4-STRAND PRETZEL KNOTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 2,  2015, pp.235-244
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.2.235
 Title & Authors
RASMUSSEN INVARIANTS OF SOME 4-STRAND PRETZEL KNOTS
KIM, SE-GOO; YEON, MI JEONG;
  PDF(new window)
 Abstract
It is known that there is an infinite family of general pretzel knots, each of which has Rasmussen s-invariant equal to the negative value of its signature invariant. For an instance, homologically -thin knots have this property. In contrast, we find an infinite family of 4-strand pretzel knots whose Rasmussen invariants are not equal to the negative values of signature invariants.
 Keywords
Rasmussen invariant;knot signature;pretzel knot;
 Language
English
 Cited by
 References
1.
T. Abe and K. Kishimoto, The dealternating number and the alternation number of a closed 3-braid, J. Knot Theory Ramifications 19 (2010), no. 9, 1157-1181. crossref(new window)

2.
M. M. Asaeda and J. H. Przytycki, Khovanov homology: torsion and thick- ness, Advances in topological quantum field theory, 135-166, NATO Sci. Ser. II Math. Phys. Chem., 179, Kluwer Acad. Publ., Dordrecht, 2004.

3.
A. Beliakova and S. Wehrli, Categorification of the colored Jones polynomial and Rasmussen invariant of links, Canad. J. Math. 60 (2008), no. 6, 1240-1266. crossref(new window)

4.
J. Greene, Homologically thin, non-quasi-alternating links, Math. Res. Lett. 17 (2010), no. 1, 39-49. crossref(new window)

5.
S. Jabuka, Rational Witt classes of pretzel knots, Osaka J. Math. 47 (2010), no. 4, 977-1027.

6.
T. Kawamura, An estimate of the Rasmussen invariant for links and the deter mination for certain links, to appear in Topology Appl.

7.
M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359-426. crossref(new window)

8.
S.-G. Kim and M. J. Yeon, Rasmussen and Ozsvath-Szabo invariants of a family of general pretzel knots, to appear in J. Knot Theory Ramifications.

9.
The Knot Atlas, http://katlas.org/

10.
E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005), 554-586. crossref(new window)

11.
A. Manion, The rational Khovanov homology of 3-strand pretzel links, J. Knot Theory Ramifications 23 (2014), no. 8, 1450040, 40 pp.

12.
C. Manolescu and P. Ozsvath, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gokova Geometry-Topology Conference 2007, 60-81, Gokova Geometry/Topology Conference (GGT), Gokova, 2008.

13.
J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), 419-447 crossref(new window)

14.
R. Suzuki, Khovanov homology and Rasmussen's s-invariants for pretzel knots. J. Knot Theory Ramifications 19 (2010), no. 9, 1183-1204. crossref(new window)

15.
P. Turner, Five lectures on Khovanov homology, preprint (arXiv:math/0606464).

16.
O. Viro, Remarks on definition of Khovanov homology, preprint (arXiv:math/0202199).