JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SMARANDACHE CURVES OF SOME SPECIAL CURVES IN THE GALILEAN 3-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 2,  2015, pp.253-264
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.2.253
 Title & Authors
SMARANDACHE CURVES OF SOME SPECIAL CURVES IN THE GALILEAN 3-SPACE
ABDEL-AZIZ, H.S.; KHALIFA SAAD, M.;
  PDF(new window)
 Abstract
In the present paper, we consider a position vector of an arbitrary curve in the three-dimensional Galilean space . Furthermore, we give some conditions on the curvatures of this arbitrary curve to study special curves and their Smarandache curves. Finally, in the light of this study, some related examples of these curves are provided and plotted.
 Keywords
Galilean space;Smarandache curves;Frenet frame;
 Language
English
 Cited by
1.
Spacelike and timelike admissible Smarandache curves in pseudo-Galilean space, Journal of the Egyptian Mathematical Society, 2016, 24, 3, 416  crossref(new windwow)
 References
1.
A. T. Ali, Special Smarandache curves in the Euclidean space, International Journal of Mathematical Combinatorics, 2 (2010), 30-36.

2.
A. T. Ali, Position vectors of curves in the Galilean space $G_3$, Matematicki Vesnik, 64(3) (2012), 200-210.

3.
B. Divjak and Z. Milin Sipus, Minding's isometries of ruled surfaces in Galilean and pseudo-Galilean space, J. Geom., 77 (2003), 35-47. crossref(new window)

4.
B. J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in the Galilean space $G_3$, Glasnik Matematicki, 22(42) (1987), 449-457.

5.
E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage Algebra Geom., 38(2) (1997), 261-288.

6.
E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66 (1909), 517-557. crossref(new window)

7.
I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, New York, 1979.

8.
M. Turgut and S. Yilmaz, Smarandache curves in Minkowski space-time, International Journal of Mathematical Combinatorics, 3 (2008), 51-55.

9.
M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.

10.
O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Institut fur Math. und Angew. Geometrie, Leoben, 1984.

11.
D.J. Struik, Lectures in Classical Differential Geometry, Addison,-Wesley, Reading, MA, 1961.

12.
X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geomet. Design, 20 (2003), 303-317. crossref(new window)