JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE VOLUME OF GRAPH POLYTOPES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 3,  2015, pp.361-376
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.3.361
 Title & Authors
ON THE VOLUME OF GRAPH POLYTOPES
JU, HYEONG-KWAN; KIM, SANGWOOK; SEO, SOO-JEONG;
  PDF(new window)
 Abstract
We have calculated the volume of the graph polytopes associated with several types of graphs.
 Keywords
graph polytope;volume;generating function;
 Language
English
 Cited by
1.
VOLUME OF GRAPH POLYTOPES FOR THE PATH-STAR TYPE GRAPHS, Honam Mathematical Journal, 2016, 38, 1, 71  crossref(new windwow)
 References
1.
M. Beck and S. Robins, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York (2007). Electronically available at http://math.sfsu.edu/beck/ccd.html.

2.
M. Bona and H.-K. Ju, Enumerating solutions of a system of linear inequalities related to magic squares, Ann. Combin. 10(2006) 179-191. crossref(new window)

3.
M. Bona, H.-K. Ju and R. Yoshida, On the enumeration of a certain weighted graphs, Discrete Applied Math., 155(2007) 1481-1496. crossref(new window)

4.
N. Elkies, On the sums ${\Sigma}^{\infty}_k=_{-\infty}(4k+1)^{-n}$, Amer. Math. Monthly 110, no. 7(Aug.-Sep. 2003), 561-573. crossref(new window)

5.
D. Lee and H.-K. Ju, Different volume computation methods of graph polytopes, Preprint (arXiv:1507.07623v1 [math.CO]), 2015.

6.
H.-K. Ju, Enumeration of weighted complete graphs, J. Korean Math. Soc. 44(2007), 1351-1621. crossref(new window)

7.
The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.

8.
W. Rudin, Principles of mathematical analysis (3rd ed.), McGraw-Hill, 1976.

9.
R. Stanley, A Survey of alternating permutations, Contemporary Mathematics 531 (2010), 165-196. crossref(new window)

10.
H.-J. Woo, On the enumeration of weighted tree of certain types and volumes of the associated graph polytopes, Chonnam National Univ., Feb. 2014.