JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SLICE THEOREM FOR SEMIALGEBRAICALLY PROPER ACTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 4,  2015, pp.431-440
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.4.431
 Title & Authors
SLICE THEOREM FOR SEMIALGEBRAICALLY PROPER ACTIONS
KIM, SANGWOOK; PARK, DAE HEUI;
  PDF(new window)
 Abstract
Let G be a semialgebraic group which is not necessarily compact. Let X be a semialgebraically proper G-set such that the orbit space has a semialgebraic structure. In this paper we prove the existence of semialgebraic slices of X. Moreover X can be covered by finitely many semialgebraic G-tubes.
 Keywords
noncompact;proper actions;semialgebraic;slice;
 Language
English
 Cited by
 References
1.
J. Bochnak, M. Coste and M.-F. Roy, Real Agebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998.

2.
G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, 1972.

3.
G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), 69-78. crossref(new window)

4.
M.-J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean Math. Soc. 41 (2004), 629-646. crossref(new window)

5.
M.-J. Choi, D. H. Park, and D. Y. Suh, Proof of semialgebraic covering mapping cylinder conjecture with semialgebraic covering homotopy theorem, Top. Appl. 154 (2007), 69-89. crossref(new window)

6.
H. Delfs and M. Knebusch, On the homology of algebraic varieties over real closed fields, J. Reine Angew. Math. 335 (1981), 122-163.

7.
H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, Lecture Notes in Math. 1173, Springer, Berlin, 1985.

8.
T. tom Dieck, Transformation Groups, Walter de Gruyter, New York, 1987.

9.
A. M. Gleason, Space with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35-43.

10.
H. Hironaka, Triangulations of algebraic varieties, Proc. Sympos. Pure Math. 29 (1975), 165-185.

11.
S. ALojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat. 18(3) (1964), 449-474.

12.
D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. 63 (1957), 108-116.

13.
G. D. Mostow, Equivariant embeddings in euclidean space, Ann. of Math. 65(3)(1957), 432-446. crossref(new window)

14.
D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), 725-742. crossref(new window)

15.
D. H. Park, On orbit types of semialgebraically proper actions Arch. Math. 101 (2013), 33-41. crossref(new window)

16.
D. H. Park, A note on semialgebraically proper maps, Ukrainian Math. J. 66(9) (2015), 1414-1422. crossref(new window)

17.
C. Scheiderer, Quotients of semi-algebraic spaces, Math. Z. 201 (1989), 249-271. crossref(new window)