JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF A 3-DIMENSIONAL QUADRATIC-ADDITIVE TYPE FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 4,  2015, pp.473-486
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.4.473
 Title & Authors
STABILITY OF A 3-DIMENSIONAL QUADRATIC-ADDITIVE TYPE FUNCTIONAL EQUATION
LEE, YANG-HI;
  PDF(new window)
 Abstract
In this paper, we investigate a stability problem for a functional equation f(-x - y - z) - f(x + y) - f(y + z) - f(x + z) + 2f(x) + 2f(y) + 2f(z) - f(-x) - f(-y) - f(-z) = 0 by applying the direct method.
 Keywords
stability;direct method;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1959), 64-66.

2.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi-mately additive mappings, J. Math. Anal. and Appl., 184 (1994), 431-436. crossref(new window)

3.
D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. crossref(new window)

4.
S.-S. Jin and Y.-H. Lee, On the stability of the quadratic-additive type functional equation in random normed spaces via fixed point method, Korean J. Math., 20 (2012), 19-31. crossref(new window)

5.
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications Vol. 4, Springer, New York, 2011

6.
Y.-H. Lee, On the quadratic additive type functional equations, Int. J. Math. Anal. (Ruse), 7 (2013), 1935-1948.

7.
Y.-H. Lee and S.-M. Jung, A general uniqueness theorem concerning the stability of additive and quadratic functional equations, J. Funct. Spaces, 2015 (2015), Artcle ID 643969 8pages.

8.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. crossref(new window)

9.
S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.