JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG VERSIONS OF κ-FRÉCHET AND κ-NET SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 4,  2015, pp.549-557
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.4.549
 Title & Authors
STRONG VERSIONS OF κ-FRÉCHET AND κ-NET SPACES
CHO, MYUNG HYUN; KIM, JUNHUI; MOON, MI AE;
  PDF(new window)
 Abstract
We introduce strongly - and strongly -sequential spaces which are stronger than - and -net spaces respectively. For convenience, we use the terminology "-sequential" instead of "-net space", introduced by R.E. Hodel in [5]. And we study some properties and topological operations on such spaces. We also define strictly - and strictly -sequential spaces which are more stronger than strongly - and strongly -sequential spaces respectively.
 Keywords
strongly ;-net space;strongly -;strongly -sequential;strictly -;strictly -sequential;
 Language
English
 Cited by
 References
1.
A. V. Arhangel'skii and V. I. Ponomarev, Fundamentals of General Topology, D. Reidel Publishing Co., Dordrecht/Boston/Lancaster, 1984.

2.
M.H. Cho, J. Kim, and M.A. Moon, Generalized properties of strongly Frechet, Honam Math. J., 34(1) (2012), 85-92. crossref(new window)

3.
M.H. Cho, M. A. Moon, and J. Kim, New cardinal functions related to almost closed sets, Honam Math. J., 35(3) (2013), 541-550. crossref(new window)

4.
R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

5.
R. E. Hodel, A theory of convergence and cluster points based on $\kappa$-nets, Topology Proc., 35 (2010), 291-330.

6.
A. Kaminski, Remarks on multivalued convergence, in: J. Novak(Ed.), General Topology and its Relations to Modern Analysis Algebra V, Proc. Fifth Prague Topol. Symp., 1981, 418-422, Heldermann Verlag, Berlin, 1982.

7.
P. R. Meyer, Sequential properties of ordered topological spaces, Compositio Mathematicae, 21 (1969), 102-106.

8.
E. Michael, A quintuple quotient quest, Gen. Topology Appl., 2 (1972), 91-138. crossref(new window)