JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE DERIVATIVE OF A DUAL QUATERNIONIC FUNCTION WITH VALUES IN DUAL QUATERNIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 4,  2015, pp.559-567
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.4.559
 Title & Authors
THE DERIVATIVE OF A DUAL QUATERNIONIC FUNCTION WITH VALUES IN DUAL QUATERNIONS
KIM, JI EUN; SHON, KWANG HO;
  PDF(new window)
 Abstract
This paper gives the expression of dual quaternions and provides differential operators in dual quaternions. The paper also represents the derivative of dual quaternion-valued functions by using a corresponding Cauchy-Riemann system in dual quaternions.
 Keywords
quaternion;dual number;derivative;hyperholomorphic function;Clirrord analysis;
 Language
English
 Cited by
 References
1.
W. Clifford, Mathematical Papers, Macmillan and Company, 1882.

2.
W. R. Hamilton, Elements of Quaternions, Longmans, Green, & Company, 1866.

3.
J. Kajiwara, X. D. Li and K. H. Shon, Regeneration in complex, quaternion and Clifford analysis, Adv Comp Anal Appl., Int Coll Finite or Infinite Dim Comp Anal Appl., Hanoi, Vietnam, Kluwer Academic Publishers 2(9) (2004), 287-298.

4.
J. Kajiwara, X. D. Li and K. H. Shon, Function spaces in complex and Clifford analysis, Inhomo Cauchy-Riemann system quat Cliff anal ellip., Int Coll Finite or Infinite Dim Comp Anal Appl., Hue, Vietnam, Hue University 14 (2006), 127-155.

5.
L. Kavan, S. Collins, J. Zara and C. OSullivan, Geometric skinning with approx-imate dual quaternion blending, ACM Trans Graph 27(4) (2008), 105.

6.
B. Kenwright, A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3D character hierarchies, 2012.

7.
B. Kenwright, Inverse kinematics with dual-quaternions, exponential-maps, and joint limits, Int J Adv Intel Syst. 6(1&2) (2013).

8.
J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr Appl Anal. 2013 Artical ID 136120 (2013), 7 pages.

9.
J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr Appl Anal. 2014 Artical ID 654798 (2014), 8 pages.

10.
J. E. Kim and K. H. Shon, Polar Coordinate Expression of Hyperholomorphic Functions on Split Quaternions in Clifford Analysis, Adv Appl Clifford Alg. 25(4) (2015), 915-924. crossref(new window)

11.
J. E. Kim and K. H. Shon, The Regularity of functions on Dual split quaternions in Clifford analysis, Abstr Appl Anal. 2014 Artical ID 369430 (2014), 8 pages.

12.
J. E. Kim and K. H. Shon, Coset of hypercomplex numbers in Clifford analysis, Bull Korean Math Soc. 52(5) (2015), 1721-1728. crossref(new window)

13.
J. E. Kim, K. H. Shon, Inverse Mapping Theory on Split Quaternions in Clifford Analysis, To appear in Filomat (2015).

14.
Y. Lin, H. Wang and Y. Chiang, Estimation of relative orientation using dual quaternion, in 2010 Inter Conf on System Science and Engineering on 2010, 413-416.

15.
J. McDonald, Teaching Quaternions is not Complex, Computer Graphics Forum 29(8) (2010), 2447-2455. crossref(new window)

16.
F. Messelmi, Analysis of dual functions, Ann Rev Chaos Theory Bifur Dyn Syst. 4 (2013), 37.

17.
F. Messelmi, Multidual numbers and their multidual functions, Elect J Math Anal Appl. 3(2) (2015), 154-172.

18.
H. L. Pham, V. Perdereau, B. V. Adorno and P. Fraisse, Position and orientation control of robot manipulators using dual quaternion feedback, in Intel Rob Sys., 2010 IEEE/RSJ Inter Conf on 2010, 658-663.