JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 4,  2015, pp.577-593
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.4.577
 Title & Authors
REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY
HAN, SANG-EON; LEE, SIK;
  PDF(new window)
 Abstract
Several kinds of homotopies have been substantially used to study topological properties of digital spaces. The present paper, as a survey article, studies some recent results in the field of homotopy theory associated with Khalimsky topology. In particular, Khalimsky topological properties of digital products related to the establishment of the homotopies are mainly treated.
 Keywords
digital topology;digital product;Khalimsky topology;Marcus Wyse topology;Khalimsky homotopy;
 Language
English
 Cited by
 References
1.
P. Alexandroff, Diskrete Raume, Mat. Sb. 2 (1937) 501-518.

2.
R. Ayala, E. Dominguez, A.R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Applied Math, 125(1) (2003) 3-24. crossref(new window)

3.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision 10 (1999) 51-62. crossref(new window)

4.
S.E. Han, On the classification of the digital images up to digital homotopy equivalence, Jour. Comput. Commun. Res. 10(2000) 207-216.

5.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3) (2005) 73-91. crossref(new window)

6.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1)(2005) 115-129.

7.
S.E. Han, S.E. Han, Equivalent ($k_{0},\;k_{1}$)-covering and generalized digital lifting, Information Sciences 178(2) (2008) 550-561. crossref(new window)

8.
S.E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc. 45 (2008) 923-952. crossref(new window)

9.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31 (1) (2008) 1-16. crossref(new window)

10.
S.E. Han, Cartesian product of the universal covering property Acta Applicandae Mathematicae 108 (2009) 363-383. crossref(new window)

11.
S.E. Han, KD-($k_{0},\;k_{1}$)-homotopy equivalence and its applications Journal of Korean Mathematical Society 47(5) (2010) 1031-1054. crossref(new window)

12.
S.E. Han, Multiplicative property of the digital fundamental group, Acta Appli-candae Mathematicae 110(2) (2010) 921-944. crossref(new window)

13.
S.E. Han, Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology Appl. 159 (2012) 1705-1714. crossref(new window)

14.
S.E. Han, Study on topological spaces with the semi-$T_{1/2}$ separation axiom Honam Mathematical Journal, (2013) 35(4) 707-716. crossref(new window)

15.
S.E. Han, An equivalent property of a normal adjacency of a digita product Honam Mathematical Journal, (2014) 36(3) 199-215. crossref(new window)

16.
S.E. Han, Generalizations of continuity of maps and homeomorphisms for studying 2D digital topological spaces and their applications, Topology Appl., online first press (2015).

17.
S.E. Han, Contractibility and fixed point property: The case of Khalimsky topo-logical spaces, submitted (2015).

18.
S.E. Han and Sik Lee, Remarks on digital products with normal adjacency rela-tions Honam Mathematical Journal, (2013) 35(3) 515-424. crossref(new window)

19.
S.E. Han and B.G. Park, Digital graph ($k_{0},\;k_{1}$)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm(2003).

20.
S.E. Han and B.G. Park, Digital graph ($k_{0},\;k_{1}$)-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm(2003).

21.
S.E. Han, Wei Yao, Homotopies based on Marcus Wyse topology and their applications, Topology and its applications, in press.

22.
G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing 55 (1993) 381-396.

23.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987) 227-234.

24.
E. Khalimksy, R. Kopperman, P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36(1) (1990) 1-17. crossref(new window)

25.
T.Y. Kong, A digital fundamental group Computers and Graphics 13 (1989) 159-166. crossref(new window)

26.
T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

27.
R. Malgouyres, Homotopy in 2-dimensional digital images, Theoretical Computer Science 230 (2000) 221-233. crossref(new window)

28.
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986) 177-184. crossref(new window)

29.
F. Wyse and D. Marcus et al., Solution to problem 5712, Amer. Math. Monthly 77(1970) 1119. crossref(new window)