JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FIXED POINT THEOREMS FOR DIGITAL IMAGES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 37, Issue 4,  2015, pp.595-608
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2015.37.4.595
 Title & Authors
FIXED POINT THEOREMS FOR DIGITAL IMAGES
HAN, SANG-EON;
  PDF(new window)
 Abstract
In this paper, as a survey paper, we review many works related to fixed point theory for digital spaces using Lefschetz fixed point theorem, Banach fixed point theorem, Nielsen fixed point theorem and so forth. Besides, we refer some properties of the fixed point property of a digital k-retract.
 Keywords
digital image;digital wedge;digital homotopy invariant;Lefschetz fixed point theorem;Brouwer fixed point theorem;Nielsen fixed point theorem;fixed point property;digital continuity;digital topology;Banach fixed point theorem;
 Language
English
 Cited by
1.
Contractibility and fixed point property: the case of Khalimsky topological spaces, Fixed Point Theory and Applications, 2016, 2016, 1  crossref(new windwow)
 References
1.
H. Arslan, I. Karaca, A. Oztel, Homology groups of n-dimensional digital images XXI. Turkish National Mathematics Symposium (2008) 1-13.

2.
S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math. 3 (1922) 133-181.

3.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision 10 (1999) 51-62. crossref(new window)

4.
L. Boxer, I. Karaca, A. Oztel, Topological invariants in digital images, Journal of Mathematical Sciences: Advances and Applications 11 (2011) 109-140.

5.
L. Boxer, O. Ege, I. Karaca, J. Lopez, Digital Fixed Points, Approximate Fixed Points, and Universal Functions, preprint, available at http://arxiv.org/abs/1507.02349.

6.
R.F. Brown, The Nielsen number of a fiber map, Ann. Math. 85 (1967) 483-493. crossref(new window)

7.
O. Ege, I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theorey and Applications (2013) 2013:253; doi:10.1186/1687-1812-2013-253. crossref(new window)

8.
O. Ege, I. Karaca, Applications of the Lefschetz Number to Digital Images, The Bulletin of the Belgian Mathematical Society-Simon Stevin 21(5) (2014) 823-839.

9.
O. Ege, I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Sciences and Applications 8 (2015) 237-245.

10.
O. Ege, I. Karaca, M. E. Ege, Relative homology groups of digita images, Appl. Math. Inf. Sci. 8(5) (2014), 2337-2345. crossref(new window)

11.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005) 73-91. crossref(new window)

12.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005) 115-129.

13.
S.E. Han, Connected sum of digital closed surfaces, Information Sciences 176(3) (2006) 332-348. crossref(new window)

14.
S.E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177(16) (2006) 3314-1329.

15.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31(1) (2008) 1-16. crossref(new window)

16.
S.E. Han, KD-($k_{0},\;k_{1}$)-homotopy equivalence and its applications, Journal of Korean Mathematical Society 47(5) (2010) 1031-1054. crossref(new window)

17.
S.E. Han, Ultra regular covering spaces and its automorphism group, Int. J. Appl. Math. Comput. Sci. 20(4)(2010), 699-710.

18.
S.E. Han, Personal communication with the authors of [4] on Euler characteristic for digital images, (June 28, 2015).

19.
S.E. Han, Digital version of the fixed point theory, Proceedings of 11th ICFPTA (Abstracts) (2015) p.60.

20.
S.E. Han, Banach fixed point theorem from the viewpoint of digital topology, Journal of Nonlinear Sciences and Applications 9(3) (2016) 895-905.

21.
S.E. Han, The Lefschetz number for digital images with the same digital homotopy type, Fixed Point Theorey and Applications, submitted.

22.
S.E. Han and B.G. Park, Digital graph ($k_{0},\;k_{1}$)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm (2003).

23.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987) 227-234.

24.
T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

25.
S. Lefschetz, Intersections and transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28(1) (1926) 1-49. crossref(new window)

26.
S. Lefschetz, On the fixed point formula, Ann. of Math. 38(4) (1937) 819-822. crossref(new window)

27.
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986) 177-184. crossref(new window)

28.
E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.