JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON RIEMANN DELTA-ALPHA FRACTIONAL INTEGRALS ON TIME SCALES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 38, Issue 1,  2016, pp.141-149
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2016.38.1.141
 Title & Authors
ON RIEMANN DELTA-ALPHA FRACTIONAL INTEGRALS ON TIME SCALES
Zhao, Dafang; Cheng, Jian;
  PDF(new window)
 Abstract
In this paper, we introduce and investigate the concept of Riemann Delta-alpha fractional integral on time scales. Many properties of this integral will be obtained.
 Keywords
fractional integral;Riemann Delta integral;time scales;
 Language
English
 Cited by
 References
1.
M. Bohner, A. Peterson, Dynamic equations on time scales. An introduction with applications, Birkhauser, Boston, MA, 2001.

2.
M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser,Boston, 2004.

3.
A. Carpinteri, P. Cornetti, Alberto Sapora, Nonlocal elasticity: an approach based on fractional calculus, Meccanica, (2014),49(11):2551-2569. crossref(new window)

4.
R. Herrmann, Fractional Calculus:An Introduction for Physicists, World Scientific, Singapore, 2014.

5.
S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math.,(1990),18:18-56. crossref(new window)

6.
R. Khalil, M. Al Horani,A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math.,, (2014), 264:57-66.

7.
K. Miller,B. Ross,An introduction to the fractional calculus and fractional differential equations, New York: Wiley,1993.

8.
R. P. Meilanov, R. A. Magomedov, Thermodynamics in Fractional Calculus, J. Eng. Phys. Thermophys.,, (2014),87(6):1521-1531. crossref(new window)

9.
K. B. Oldham,J. Spanier, The fractional calculus, Academic Press, New York and London, 1974.

10.
I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

11.
J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, The Netherlands, 2007.

12.
I. Tejado, D. Valrio, N. Valrio, Fractional Calculus in Economic Growth Modelling:The Spanish Case, Controlo2014 -Proceedings of the 11th Portuguese Conference on Automatic Control Lecture Notes in Electrical Engineering,(2015),321:449-458.