JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 38, Issue 1,  2016, pp.47-57
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2016.38.1.47
 Title & Authors
LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD
Kim, Seung Soo; Lee, Yong Hun; Oh, Eun Jung;
  PDF(new window)
 Abstract
In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the least-squares solution which minimizes the sum of the squares of errors at each node points. Some numerical results are reported.
 Keywords
Least-squares method;Legendre spectral method;bubble-stabilization;advection-diffusion equation;Gauss-Newton method;
 Language
English
 Cited by
 References
1.
C. BAIOCCHI, F. BREZZI AND L.P. FRANCA Virtual bubbles and Galerkin-least-squares type methods, Comput. Methods. Appl. Mech. Engrg., 105(1993), pp. 125-142. crossref(new window)

2.
A.N.T. BROOKS AND T.J.R. HUGHES, Streamline upwind/Petrov-Galerkin formulations for convected dominated flows with a particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199-259. crossref(new window)

3.
C. CANUTO Spectral methods and a maximum principle, Math. Comp. 51 (1988) pp615-629. crossref(new window)

4.
C. CANUTO, M.Y.HUSSAINI, A. QUARTERONI AND T.A. ZANG Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin 2007

5.
C. CANUTO, M.Y.HUSSAINI, A. QUARTERONI AND T.A. ZANG Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin 2006

6.
C. CANUTO and G. PUPPO, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, Comput. Methods Appl. Mech. Engr., 118 (1994), pp. 239-263. crossref(new window)

7.
S. D. KIM Piecewise bilinear preconditioning of high-order finite element methods, Electron. Trans. Numer. Anal. 26 (2007), 228-242.

8.
S. KIM and S. D. KIM, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto nodes, Applied. Numer. Math., 59 (2009), pp. 316-333. crossref(new window)

9.
S. D. KIM and S. PARTER, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal., 33(1996), pp2375-2400. crossref(new window)

10.
SEUNG SOO KIM, YONG HUN LEE AND EUN JUNG OH Optimization for the Bubble Stabilized Legendre Galerkin Method by Steepest Descent Method, Honam Mathematical Journal, 36 (2014), pp755-766. crossref(new window)

11.
H. MA, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 35 (1998), pp869-892. crossref(new window)

12.
W. SUN AND Y. YUAN Optimization Theory and Methods. Nonlinear Programming, Springer-Verlag, 2006