JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE TIGHT INTEGRAL CLOSURE OF A SET OF IDEALS RELATIVE TO MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 38, Issue 2,  2016, pp.231-241
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2016.38.2.231
 Title & Authors
THE TIGHT INTEGRAL CLOSURE OF A SET OF IDEALS RELATIVE TO MODULES
Dorostkar, F.; Khosravi, R.;
  PDF(new window)
 Abstract
In this paper we will define the tight integral closure of a finite set of ideals of a ring relative to a module and we will study some related results.
 Keywords
Tight closure;Integral closure;and Tight integral closure relative to module;
 Language
English
 Cited by
 References
1.
H. Ansari-Toroghy and F. Dorostkar, On the integral closure of ideals, Honam Math. J., 29(4) (2007), 653-666. crossref(new window)

2.
H. Ansari-Toroghy and F. Dorostkar, Tight closure of ideals relative to modules, Honam Math. J., 32(4) (2010), 675-687. crossref(new window)

3.
H. Ansari-Toroghy and R.Y. Sharp, Integral closure of ideals relative to injective modules over commutative Noetherian rings, Quart. J. Math. Oxford, (2) 42 (1991), 393-402. crossref(new window)

4.
F. Dorostkar and R. Khosravi, F-regularity relative to modules, in preparation.

5.
M. Hochster and C. Huneke, Tight closure, invariant theory, and Briancon-Skoda theorem, J. Amer. Math. Soc., 3 (1990), 31-116.

6.
M. Hochster, The tight integral closure of a set of ideals, J. Algebra, 230 (2000), 184-203. crossref(new window)

7.
S. MacAdam, Asymptotic prime divisors, Lecture Notes in Mathematics 1023, Springer, Berlin, 1983.

8.
R. Y. Sharp and A. J. Taherizadeh, Reduction and integral closure of ideals relative to an Artinian module, J. London Math. Soc., 37(2) (1988), 203-218.

9.
R. Y. Sharp, Y. Tiras, and M. Yassi, Integral closure of ideals relative to local cohomology module over quasi unmixed local ring, J. London Math. Soc., 42(2) (1990), 385-392.

10.
I. Swanson and C. Huneke, Integral closure of ideals, rings, and modules, Cambridge Univ. Press, New York, 2006.