JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FIXED POINT THEOREMS FOR WEAK CONTRACTION IN INTUITIONISTIC FUZZY METRIC SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 38, Issue 2,  2016, pp.337-357
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2016.38.2.337
 Title & Authors
FIXED POINT THEOREMS FOR WEAK CONTRACTION IN INTUITIONISTIC FUZZY METRIC SPACE
Vats, Ramesh Kumar; Grewal, Manju;
  PDF(new window)
 Abstract
The notion of weak contraction in intuitionistic fuzzy metric space is well known and its study is well entrenched in the literature. This paper introduces the notion of ()-weak contraction in intuitionistic fuzzy metric space. In this contrast, we prove certain coincidence point results in partially ordered intuitionistic fuzzy metric spaces for functions which satisfy a certain inequality involving three control functions. In the course of investigation, we found that by imposing some additional conditions on the mappings, coincidence point turns out to be a fixed point. Moreover, we establish a theorem as an application of our results.
 Keywords
common fixed point;fuzzy metric space;control function;weak contraction;
 Language
English
 Cited by
 References
1.
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96. crossref(new window)

2.
C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 29 (2006), 1073-1078. crossref(new window)

3.
I. Beg, C. Vetro, D. Gopal and M. Imdad, ($\phi$, $\psi$ )-weak contractions in intuitionistic fuzzy metric spaces, J. Intell. Fuzzy Systems, 26(5) (2014), 2497-2504.

4.
S. Banach, Theoriles operations Linearies Manograie Mathematyezne, Warsaw, Poland, 1932.

5.
M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79.

6.
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389. crossref(new window)

7.
G. Jungck and B.E. Rhoades, Fixed Point for set valued function without continuity, J. Pure Appl. Math., 29(3) (1998), 227-238.

8.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336-344.

9.
M.S. Khan, M. Swaleh and S. Sessa, Fixed points theorems by altering distances between the points, Bull. Aust. Math.Soc., 30 (1984), 1-9. crossref(new window)

10.
A. Kumar and R. K. Vats, Common fixed point theorem in fuzzy metric space using control function, Commun. Korean Math. Soc., 28(3) (2013) 517-526. crossref(new window)

11.
R. Lowen, Fuzzy set theory, Kluwer Academic Publishers, Dordrecht, 1996.

12.
K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942), 535-537. crossref(new window)

13.
J.H. Park, Intutionistic fuzzy metric space, Chaos Solitons Fractals, 22 (2004), 1039-1046. crossref(new window)

14.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific. J. Math, 10 (1960), 313-334. crossref(new window)

15.
D. Turkoglu, C. Alaca and C. Yildiz, Compatible maps and compatible maps of types ($\alpha$) and ($\beta$) in intuitionistic fuzzy metric spaces, Demonstratio Math., 39(3) (2006), 671-684.

16.
L.A. Zadeh, Fuzzy Sets, Inform. Control, 89 (1965), 338-353.

17.
http://en.wikipedia.org/wiki/Partially_ordered_set.