JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CURVATURES ON THE ABBENA-THURSTON MANIFOLD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 38, Issue 2,  2016, pp.359-366
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2016.38.2.359
 Title & Authors
CURVATURES ON THE ABBENA-THURSTON MANIFOLD
Han, Ju-Wan; Kim, Hyun Woong; Pyo, Yong-Soo;
  PDF(new window)
 Abstract
Let H be the 3-dimensional Heisenberg group, ($G
 Keywords
Heisenberg group;Abbena-Thurston manifold;scalar curvature;homogeneous Riemannian manifold;Ricci curvature;
 Language
English
 Cited by
 References
1.
E. Abbena, An example of an almost Kaehler manifold which is not Kaehlerian, Bollettino U.M.I. 3-A (1984), 383-392.

2.
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

3.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley-Interscience, New York, 1963.

4.
J. Milnor, Curvatures of left invariant metric on Lie groups, Advances in Math. 21 (1976), 293-329. crossref(new window)

5.
J.-S. Park and W.-T. Oh, The Abbena-Thurston manifold as a critical point, Canad. Math. Bull. 39 (1996), 352-359. crossref(new window)

6.
J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Interdiscip. Inform. Sci. 11 (2005), 31-34.

7.
J.-S. Park, Differential geometric properties on the Heisenberg group, to appear in J. Korean Math. Soc.

8.
J.-S. Park, Surfaces embedded isometrically in the Heisenberg group, to appear.

9.
J.A. Wolf, Curvatures in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964), 271-274. crossref(new window)