JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PSEUDO-SYMMETRY ON UNIT TANGENT SPHERE BUNDLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 38, Issue 2,  2016, pp.375-384
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2016.38.2.375
 Title & Authors
PSEUDO-SYMMETRY ON UNIT TANGENT SPHERE BUNDLES
Cho, Jong Taek; Chun, Sun Hyang;
  PDF(new window)
 Abstract
In this paper, we study the pseudo-symmetry of unit tangent sphere bundle. We prove that if the unit tangent sphere bundle with standard contact metric structure over a locally symmetric , is pseudo-symmetric, then M is of constant curvature.
 Keywords
pseudo-symmetry;unit tangent sphere bundles;
 Language
English
 Cited by
 References
1.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.

2.
D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, Singapore 509 (1989), 15-30.

3.
E. Boeckx and L.Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math., 23 (1997), 427-448.

4.
E. Boeckx, D.Perrone and L.Vanhecke, Unit tangent sphere bundles and two-point homogeneous spaces, Periodica Math. Hungarica, 36 (1998), 79-95. crossref(new window)

5.
E. Boeckx and G. Calvaruso, When is the unit tangent sphere bundle semi-symmetric?, Tohoku Math. J., 56 (2004), 357-366. crossref(new window)

6.
E. Cartan, Lecons sur la geometrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.

7.
J.T. Cho and S.H. Chun, Symmetries on unit tangent sphere bundles, roceedings of The Eleven InternationalWorkshop on Differential Geom., 11 (2007), 153-170.

8.
J.T. Cho and Jun-ichi Inoguchi, Pseudo-symmetric contact 3-manifolds II, Note di Matematica, 27 (2007), 119-129.

9.
R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., 44 (1992), 1-34.

10.
P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.

11.
O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129.

12.
Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J., 21 (1969), 117-143. crossref(new window)

13.
K. Yano and S. Ishihara, Tangent and cotangent bundles, M. Dekker Inc., 1973.