JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TEM Observations of Chemosynthetic Bacteria in the Deep-sea Hydrothermal Vents and Seep Organisms
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 24, Issue 3,  2002, pp.215-223
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2002.24.3.215
 Title & Authors
TEM Observations of Chemosynthetic Bacteria in the Deep-sea Hydrothermal Vents and Seep Organisms
Kim, Dong-Sung; Ohta, Suguru;
  PDF(new window)
 Abstract
Symbiosis of chemoautrophic bacteria with the members of hydrothermal vent and cold seep communities in the deep-sea were examined by histology using transmission electron microscopy; Bathymodiolus spp. from Sagami Bay, the Iheya Ridge and the North Fiji Basin; and Ifremeria nautilei from the North Fiji Basin. Two species of Bathymodiolus, each from Sagami Bay and the Iheya Ridge harbored methane-oxidizing symbionts within their gill tissues. Vent gastropod Ifremeria nautilei from the hydrothermal vents of the North Fiji Basin housed two types of symbionts; one sulfur-oxidizing type and the other methane-oxidizing type. The occurrence of chemosynthetic symbionts in these organisms were expected before-hand based on the ecological observations of their habit. The other members of these groups from world oceans and the recent advances in the symbiosis of the vent and seep communities were reviewed.
 Keywords
symbiosis;benthos;hydrothermal vent;bivalves;gastropod;cold seep;
 Language
English
 Cited by
 References
1.
Bannister, L.H. 1979. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms. Proc. Royal Soc. London, B204, 141-163.

2.
Belkin, S., D.D. Nelson, and H.W. Jannasch. 1986. Symbiotic assimilation of $CO_2$ in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. Mar. Biol. Lab., Woods Hole, 170, 110-121. crossref(new window)

3.
Cavanaugh, C.M. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, 302, 58-61. crossref(new window)

4.
Cavanaugh, C.M. 1985. Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Biol. Soc. Wash., 1985(6), 373-388.

5.
Cavanaugh, C.M., S.L. Gardiner, M.L. Jones, H.W. Jannasch, and J.B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, 213, 340-342. crossref(new window)

6.
Cavanaugh, C.M., P.R. Levering, J.S. Maki, R. Mitchell, and M.E. Lidstrom. 1987. Symbiosis of methanotrophic bacteria and deep-sea mussels. Nature, 325, 346-348. crossref(new window)

7.
Childress, J.J., C.R. Fisher, J.M. Brooks, M.C. Kennicutt II, R.R. Bidigare, and A.E. Anderson. 1986. A methanotrophic marine molluscan (Bivalvia: Mytilidae) symbiosis: mussels fueled by gas. Science, 233, 1306-1308. crossref(new window)

8.
Comita, P.B., R.B. Gargosian, and P.M. Williams. 1984. Suspended particulate organic material from hydrothermal vent water at 21. Nature, 307, 450-453. crossref(new window)

9.
Endow, K. and S. Ohta. 1989. The symbiotic relationship between bacteria and a mesogastropod snail, Alviniconcha hessleri, collected from hydrothermal vents of the Mariana Back-Arc Basin. Bull. Jap. Soc. Micro. Ecol., 3, 73-82. crossref(new window)

10.
Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, 209, 336-338.

11.
Felbeck, H., J.J. Childress, and G.N. Somero. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature, 293, 291-293. crossref(new window)

12.
Felbeck, H., J.J. Childress, and G.N. Somero. 1983. Biochemical interactions between molluscs and their algal and bacterial symbionts. p. 331-358. In: Environmental biochemistry and Physiology, ed. by P.W. Hochachka. The Mollusca, Vol. 2. Academic Press, NY.

13.
Fiala-Medioni, A. 1984. Mise en evidence par microscopie electronique a transmission de l'abondance de bacteries symbiotique dans la branchie de mollusques bivalves de sources hydrothermales profondes. Comptes Rendu hebd. Seanc. Acad. Sci., 298, 487-492.

14.
Fiala-Medioni, A., A.-M. Alayse, and G. Cachet. 1986. Evidence of in situ uptake and incorporation of bicarbonate and amino acids by the hydrothermal vent mussel. J. Exp. Mar. Biol. Ecol., 96, 191-198. crossref(new window)

15.
Fisher, C.R., J.J. Childress, A.J. Arp, J.M. Brooks, D. Distel, J.A. Favuzzi, H. Felbeck, R. Hessler, K.S. Johnson, M.C. Kennicutt II, S.A. Macko, A. Newton, M.A. Powell, G.N. Somero, and T. Soto. 1988. Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos Rift. Deep Sea Res., 35, 1769-1791. crossref(new window)

16.
Giere, O. and C. Langheld. 1987. Structural organization transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol., 93, 641-650. crossref(new window)

17.
Hashimoto, J., K. Fujikura, and H. Hotta. 1990. Observations of deep sea biological communities at the Minami-Ensei Knoll. JAMSTEC Deep. Res., 6, 167-180.

18.
Hessler, R.R. and W.M.Jr. Smithey. 1983. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. p. 735-770. In: Hydrothermal Process at Seafloor Spreading Centers, eds. by P.A. Rona, K. Bostrom, L. Laubier, and K.L. Jr. smith. NATO Conference Series IV, Plenum Press, New York.

19.
Higgins, I.J., D.J. Best, R.C. Hammond, and D. Scott. 1981. Methane-oxidizing microorganisms. Micro. Rev., 45, 556-590.

20.
Jannasch, H.W. and C.O. Wirsen. 1979. Chemosynthetic primary production at east-Pacific seafloor spreading center. Biosciences, 29, 592-598. crossref(new window)

21.
Kennicutt, II, M.C., J.M. Brooks, R.R. Bidigare, R.R. Fay, T.L. Wade, and T.J. Mcdonald. 1985. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, 317, 351-353. crossref(new window)

22.
Laubier, L. and D. Desbruyeres. 1984. Les oasis du fond des oceans. La Recherche, 15, 1506-1517.

23.
Le Pennec, M. and A. Hily. 1984. Anatomie, structure et ultrastructure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique Oriental. Oceanologica Acta, 7, 517-523.

24.
Le Pennec, M. and D. Prieur. 1984. Observations sur la nutrition d'un Mytilidae d'un site hydrothermal actif de la dorsale du Pacifique oriental. C. R. Acad. Sci. Paris, Ser. III, 298, 493-498.

25.
Paull, C.K., B. Hecker, R. Commeau, R.P. Freeman-Lynde, C. Neumann, W.P. Corso, S. Golubic, J.E. Hook, E. Sikes, and J. Curray. 1984. Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, 226, 965-967. crossref(new window)

26.
Rau, G.H. and J.I. Hedges. 1979. Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, 203, 648-649. crossref(new window)

27.
Schweimanns, M. and H. Felbeck. 1985. Significance of the occurrence of chemoautotrophic endosymbionts in lucinid clams from Bermuda. Mar. Ecol. Prog. Ser., 24, 113-120. crossref(new window)

28.
Smith, D.C. 1979. From extracellular to intracellular: the establishment of a symbiosis. Proc. Royal Soc. London, B204, 115-130.

29.
Smith, K.L.Jr. 1985. Deep sea hydrothermal vent mussels: nutrition stage and distribution at the Galapagos Rift. Ecology, 66, 1067-1080. crossref(new window)

30.
Southward, E.C. 1986. Gill symbionts in thyasirids and other bivalve molluscs. J. Mar. Biol. Assoc., 66, 889-914. crossref(new window)

31.
Stein, J.L. 1984. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents. Science, 223, 696-698. crossref(new window)

32.
Stein, J.L., S.C. Cary, R.R. Hessler, S. Ohta, R.D. Vetter, J.J. Childress, and H. Felbeck. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol. Bull., 174, 373-378. crossref(new window)