JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Determination of Rare Earth Elements Abundance in Alkaline Rocks by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 25, Issue 1,  2003, pp.53-62
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2003.25.1.053
 Title & Authors
Determination of Rare Earth Elements Abundance in Alkaline Rocks by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
Hur, Soon-Do; Lee, Jong-Ik; Lee, Mi-Jung; Kim, Yea-Dong;
  PDF(new window)
 Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) is useful instrument for determining abundance of rare earth elements, due to very low detection limits and rapid data acquisition. In this article, two methods are used for decomposition of alkaline rocks; close vessel acid digestion and fusion. The two analytical results show good agreements. Considering total dissolved solids and detection limits, the most adequate dilution factor is 5,000 times. Polyatomic ion interferences during analysis can give rise to Inaccuracies. After correction from oxide and hydroxide interference, the analytical result show 20-30% decrease for Gd and Tm, 10-20% decrease for Tb and Er. In comparing the analytical results from KORDI with other institutes, most rare earth elements abundance show good agreements except Lu.
 Keywords
ICP-MS;rare earth elements;alkaline rock;interference;
 Language
Korean
 Cited by
1.
The A-type Pirrit Hills Granite, West Antarctica: an example of magmatism associated with the Mesozoic break-up of the Gondwana supercontinent,;;;;;

Geosciences Journal, 2012. vol.16. 4, pp.421-433 crossref(new window)
1.
Origin of E-MORB in a fossil spreading center: the Antarctic-Phoenix Ridge, Drake Passage, Antarctica, Geosciences Journal, 2007, 11, 3, 185  crossref(new windwow)
2.
The A-type Pirrit Hills Granite, West Antarctica: an example of magmatism associated with the Mesozoic break-up of the Gondwana supercontinent, Geosciences Journal, 2012, 16, 4, 421  crossref(new windwow)
3.
Rare earth element composition of paleo-maar sediments (latest Pleistocene–Early Holocene), Jeju Island, Korea: Implications for Asian dust record and monsoon climate, Quaternary International, 2014, 344, 32  crossref(new windwow)
4.
East Asian monsoon variation and climate changes in Jeju Island, Korea, during the latest Pleistocene to early Holocene, Quaternary Research, 2008, 70, 2, 265  crossref(new windwow)
5.
Late Quaternary glacial–interglacial variations in sediment supply in the southern Drake Passage, Quaternary Research, 2012, 78, 1, 119  crossref(new windwow)
 References
1.
Aries, S., M. Valladon, M. Polve, and B. Dupre. 2000. A Routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples. Geostand. Newsl.: J. Geostandards Geoanal., 24, 19-31. crossref(new window)

2.
Balanganskay, E., A. Verhulst, H. Downes, R. Liferovich, D. Demaiffe, and K. Laajoki. 2000. Geochemistry, petrography and mineralogy of clinopyroxenite, phoscorites and carbonatites of the Seblyavr massif, Kola Alkaline Carbonatite Province, Russia. Abstract of the 5th Svekalapko Workshop, University of Oulu.

3.
Bea, F., P. Montero, A. Stroh, and J. Baasner. 1996. Microanalysis of minerals by an Eximer UV-LA-ICP-MS system. Chem. Geol., 133, 145-156. crossref(new window)

4.
Becker, J.S. and H.-J. Dietze. 1999. Long lived radionucIides: Ultratrace and precise isotope analysis by double-focusing sector field ICP-MS. 99 European Winter Conference on Plasma Spectrochemistry (Pau), abstract volume, 55 p.

5.
Burman, O., C. Ponter, and K Bostromet. 1978. Metaborate digestion procedure for Inductively Coupled Plasma-Optical Emission Spectrometry. Anal. Chem., 50, 679-680. crossref(new window)

6.
Chao, T.T. and R.F. Sanzolone. 1992. Decomposition techniques. Geochem. Explor., 44, 65-106. crossref(new window)

7.
Cremer, M. and J. Schlocker. 1976. Lithium borate decomposition of rocks, minerals and ores. Am. Mineral., 61, 318-321.

8.
Date, A.R., Y.Y. Cheung, and M.E. Stuart. 1987. The influence of polyatomic ion interferences in analysis by inductively coupled plasma-source mass spectrometry (lCP-MS). Spectrochim. Acta, 42B, 3-20.

9.
Eby, G.N. 1975. Abundance and distribution of the rare earth elements and yttrium in the rocks and minerals of the Oka carbonatite complexes, Quebec. Geochim. Cosmochim. Acta, 39, 597-620. crossref(new window)

10.
Evans, E.H. and J.J. Giglio. 1993. Interferences in inductively coupled plasma-mass spectrometry: A reviews. J. Anal. Atomic Spect., 8, 1-18. crossref(new window)

11.
Fahey, A.J., J.N. Goswami, K.D. Mckeegan, and E. Zinner. 1987. $^{26}AI,\;^{244}Pu,\;^{50}Ti$, REE and trace element abundances in hibonite grains from CM and CV meteorites. Geochim. Cosmochim. Acta, 51, 329-350. crossref(new window)

12.
Fujimaki, H. 1986. Partition coefficents of Hf, Zr and REE between zircon, apatite, and liquid. Contrib. Mineral. Petrol., 94, 42-45. crossref(new window)

13.
Gao, S., X. Liu, H. Yuan, B. Hattendorf, D. Gunther, L. Chen, and S. Hu. 2002. Determination of forty two major and trace elements in USGS and NIST SRM-glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Newsl. J. Geostandards Geoanal., 26, 181-195. crossref(new window)

14.
Heaman, L.M., R. Bowins, and J. Crocket. 1990. The chemical composition of igneous zircon suites: implications for geological tracer studies. Geochim. Cosmochim. Acta, 54, 1597-1607. crossref(new window)

15.
Hieftje, G.M., S.J. Ray, J.P. Guzowski, A.M. Leach, and J.A.C. Broekaert. 1999. Driving forces for next generation plasma spectrometric instrumentation: Present needs, better knowledge and new technologies. 99 European Winter Conference on Plasma Spectrochemistry (Pau), abstract volume, 55 p.

16.
Hoskin, P.W.O. 1998. Minor and trace element analysis of natural zircon($ZrSiO_4$) by SIMS and laser ablation ICP-MS: a consideration and comparison of two broadly competitive techniques. J. Trace Microprobe Tech., 16, 301-326.

17.
Houk, R.S. 1999. New frontiers in instrumentation for ICP-MS. 99 European Winter Conference on Plasma Spectrochemistry (Pau), abstract volume, 55 p.

18.
Ingamells, C.O. 1970. Lithium metaborate flux in silicate analysis. Anal. Chim. Acta, 52, 323-334. crossref(new window)

19.
Jarvis, K.E. 1990. A critical evolution of two sample preparation techniques for low-level determination of some geologically incompatible elements by inductively coupled mass spectrometry. Chem. Geol. 83, 89-103. crossref(new window)

20.
Jarvis, K.E. 1988. Inductively coupled plasma mass spectrometry: a new technique for the rapid or ultra-trace level determination of the rare-earth elements in geological materials. Chem. Geol., 68, 31-39. crossref(new window)

21.
Jarvis, K.E., A.L. Gray, and R.S. Houk. 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Blackie, Galsgow, 375 p.

22.
Kay, R.W. and P.W. Gast. 1973. The rare earth content and origin of alkali-rich basalts. J. Geol., 81, 653-682. crossref(new window)

23.
Lam, J.W.H., L. Yang, and J.W. McLaren. 1999. Application of ICP-MS to the production of environmental certified reference materials. 99 European Winter Conference on Plasma Spectrochemistry (pau), abstract volume, 55 p.

24.
Lee, M.J., J.l. Lee, and S.D. Hur. 1999. Nature of carbonatite complexes of the Kola-Karelia Province in Arctic Region: special emphasis on mineral potential. Korean J. of Polar Res., 10, 143-154.

25.
Lichte, F.E., A.L. Meier, and J.G. Crock. 1987. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry. Anal. Chem., 1150-1157.

26.
MacRae, N.D. and J.B. Metson. 1985. In situ rare-earth element analysis of coexisting pyroxene and plagioclase by secondary ion mass spectrometry. Chem. Geol., 53, 325-333. crossref(new window)

27.
Mass, R., P.D. Kinny, l.S. Williams, D.O. Froude, and W. Compston. 1992. The earth's oldest known crust: a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56, 1281-1300. crossref(new window)

28.
May, T.W. and R.H. Wiedmeyer. 1998. A table of poly-atomic interferences in ICP-MS. Atomic Spectrosc., 19, 150-155.

29.
Metson, J.B., G.M. Bancroft, H.W. Nesbitt, and R.G. Jonassen. 1984. Analysis for rare earth elements in accessory minerals by specimen isolated secondary ion mass spectrometry. Nature, 307, 347-349. crossref(new window)

30.
Minnich, M.G. and R.S. Houk. 1998. Comparison of cryogenic and membrane desolvation for attenuation of oxide, hydride and hydroxide ions and ions containing chlorine in inductively coupled plasma-mass spectrometry. J. Anal. Atomic Spectrom., 13, 167-174. crossref(new window)

31.
Moller, P.G., S. Morteani, and F. Schley. 1980. Discussion of REE distribution patterns of carbonatites and alkaline rocks. Lithos, 13, 171-179. crossref(new window)

32.
Murali, A.V., R. Parthasarathy, T.M. Mahadevan, and M. Sankar Das. 1983. Trace element characteristics, REE patterns and partition coefficents of zircons from different geological environments- a case study on Indian zircons. Geochim. Cosmochim. Acta, 47, 2047-2052. crossref(new window)

33.
Nagasawa, H. 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth Planet. Sci. Lett., 9, 359-364. crossref(new window)

34.
Panteeva, S.V., D.P. Gladkochoub, T.V. Donskaya, V.V. Markova, and G.P. Sandimirova. 2003. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochim. Acta B, 58, 341-350. crossref(new window)

35.
Potts, M.J., T.O. Early, and A.G. Herman. 1973. Determination of rare earth element distribution patterns in rocks and minerals by neutron activation analysis. Z. Anal. Chem., 263, 97-100. crossref(new window)

36.
Reed, N.M., R.O. Cairns, R.C. Hutton, and Y. Takaku. 1994. Charaterisation of polyatomic ion interferences in inductively coupled plasma-mass spectrometry using a high resolution mass spectrometer. J. Anal. Atomic Spectrom., 9, 881-896. crossref(new window)

37.
Sano, Y., K. Terada, and T. Fukuoka. 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol., 184, 217-230. crossref(new window)

38.
Sano, Y. and K. Terada. 2001. In situ ion microprobe U-Pb dating and REE abundances of a Carboniferous conodont. Geophys. Res. Lett., 28, 831-834. crossref(new window)

39.
Sano, Y., K. Terada, Y. Nishio, H. Amakawa, and Y. Nozaki. 1999. Ion microprobe analysis of rare earth element in oceanic basalt glass. Anal. Sci., 15, 743-748. crossref(new window)

40.
Shao, Y. and G. Horlick. 1991. Recognition of mass spectral interferences in inductively coupled plasma-mass spectrometry. Appl. Specttrosc., 45, 413-147.

41.
Shimizu, N. and S.H. Richardson. 1987. Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim. Cosmochim. Acta, 51, 755-758. crossref(new window)

42.
Sholkoviz, E.R. 1990. Rare earth elements in marine sediments and geochemical standards. Chem. Geol., 88, 333-347. crossref(new window)

43.
Smirnova, E.V., I.N. Fedorova, G.P. Sandimirova, L.L. Petrov, N.G. Balbekina, and V.I. Lozhkin. 2003. Determination of rare earth elements in black shales by inductively coupled plasma mass spectrometry. Spectrochim. Acta B, 58, 329-340. crossref(new window)

44.
Sun, S.S. and W.F. McDonough. 1989. Magmatism in the ocean basins. Geol. Soc. Spec. Pub., 42, 313-345. crossref(new window)

45.
Tan, S.H. and G. Horlick. 1986. Background spectral features in inductively coupled plasam-mass spectrometry. Appl. Spectrosc., 40, 1127-1137. crossref(new window)

46.
Tang, Y.Q., K.E. Jarvis, and L.G. Williams. 1992. Determination of trace elements in 11 Chinese geological reference materials by ICP-MS. Geostand. Newsl.: J. Geostandards Geoanal., 16, 61-70. crossref(new window)

47.
Thomson, M. and J.N. Walsh. 1989. Handbook of Inductively Coupled Plasma Mass Spectrometry. Blackie, Glasgow, 316 p.

48.
Vaughan, M.A. and G. Horlick. 1986. Oxide, hydroxide, and doubly charged analyte species in inductively coupled plasma-mass spectrometry. Appl. Spectrosc., 40, 434-445. crossref(new window)

49.
Verhulst, A., E. Balaganskaya, Y. Kirnarsky, and D. Demaiffe. 2000. Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51, 1-25. crossref(new window)

50.
Walsh, J.N. 1980. The simultaneous determination of the major, minor and trace constituents of silicate rocks using inductively coupled plasma spectrometry. Spectochim. Acta B, 35, 107-111. crossref(new window)