JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Oxygen-Transport System of Polar Fish: The Evolution of Hemoglobin
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 25, Issue 4,  2003, pp.617-623
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2003.25.4.617
 Title & Authors
The Oxygen-Transport System of Polar Fish: The Evolution of Hemoglobin
Verde Cinzia; Prisco Guido di;
  PDF(new window)
 Abstract
Organisms living in the Arctic and Antarctic regions are exposed to strong constraints, of which temperature is a driving factor. Evolution has led to special adaptations, some with important implications at the biochemical, physiological, and molecular levels. The northern and southern polar oceans have very different characteristics. Tectonic and oceanographic events have played a key role in delimiting the two polar ecosystems and influencing evolution. Antarctica has been isolated and cold longer than the Arctic; its ice sheet developed at least 10 million years earlier. As an intermediate system, the Arctic is a connection between the more extreme, simpler Antarctic system and the very complex temperate and tropical systems. By studying the molecular bases of cold adaptation in polar fish, and taking advantage of the information available on hemoglobin structure and function, we analysed the evolutionary history of the of Antarctic and Arctic hemoglobin using the molecular clock hypothesis as a basis for reconstructing the phylogenetic relationships among species.
 Keywords
Antarctic;Arctic;fish;cold adaptation;phylogeny;
 Language
English
 Cited by
1.
The evolution of thermal adaptation in polar fish, Gene, 2006, 385, 137  crossref(new windwow)
2.
The phylogeny of polar fishes and the structure, function and molecular evolution of hemoglobin, Polar Biology, 2007, 30, 5, 523  crossref(new windwow)
 References
1.
Balushkin, A.V. 1992. Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J. Ichthyol., 32, 90-110.

2.
Brittain, T. 1987. The Root effect. Comp. Biochem. Physiol, 86B, 473-481.

3.
D’Avino, R., C. Caruso, M. Tamburrini, M. Romano, B. Rutigliano, P. Polverino de Laureto, L. Camardella, V. Carratore, and di G. Prisco. 1994. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J. Biol. Chem., 269, 9675-9681.

4.
di Prisco, G. 1997. Physiological and biochemical adaptations in fish to a cold marine environment. p. 251-260. In: Proceedings of the SCAR 6th Biology Symposium "Antarctic communities: species, structure and survival", ed. by B. Battaglia, J. Valencia, and D.W.H. Walton. Cambridge University Press, Cambridge.

5.
di Prisco, G. 1998. Molecular adaptations in Antarctic fish hemoglobins. p. 339-353. In: Fishes of Antartica: A Biological Overview, ed. by di G. Prisco, E. Pisano, and A. Clarke. Springer Verlag, Milan.

6.
di Prisco, G., R. D’Avino, C. Caruso, M. Tamburrini, L. Camardella, B. Rutigliano, V. Carratore, and M. Romano. 1991. The biochemistry of oxygen transport in red-blooded Antarctic fish. p. 263-281. In: Biology of Antarctic Fish, ed. by G. di Prisco, B. Maresca, and B. Tota. Springer Verlag, Berlin.

7.
Eastman, J.T. 2000. Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarctic Sci., 12, 276-287.

8.
Fairbanks, M.B., J.R. Hoffert, and P.O. Fromm. 1969. The dependence of the oxygen concentrating mechanism of the teleost eye (Salmo gairdneri) on the enzyme carbonic anhydrase. J. Gen. Physiol., 54, 203-211. crossref(new window)

9.
Farmer, M., H.J. Fyhn, U.E.H. Fyhn, and R.W. Noble. 1979. Occurrence of Root effect haemoglobins in Amazonian fishes. Comp. Biochem. Physiol., 62A, 115-124.

10.
Ito, N., N.H. Komiyama, and G. Fermi. 1995. Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures. J. Mol. Biol., 250, 648-658. crossref(new window)

11.
Mazzarella, L., R. D’Avino, di G. Prisco, C. Savino, L. Vitagliano, C.E. Moody, and A. Zagari. 1999. Crystal structure of Trematomus newnesi haemoglobin re-opens the Root effect question. J. Mol. Biol., 287, 897-906. crossref(new window)

12.
Perutz, M.F. and M. Brunori. 1982. Sterochemistry of cooperative effects in fish and amphibian hemoglobins. Nature, 229, 421-42.

13.
Perutz, M.F., G. Fermi, B. Luisi, B. Shaanan, and R. Liddington. 1987. Stereochemistry of cooperativity mechanism in hemoglobin. Acad. Chem. Res., 20, 309-321. crossref(new window)

14.
Pisano, E., C. Ozouf-Costaz, and V. Prirodina. 1998. Chromosome diversification in Antarctic fish (Notothenioidei). p. 275-285. In: Fishes of Antartica: A Biological Overview, ed. by di G. Prisco, E. Pisano, and A. Clarke. Springer Verlag, Milan.

15.
Riccio, A., M. Tamburrini, V. Carratore, and G. di Prisco. 2000. Functionally distinct haemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J. Fish Biol., 57, 20-32. crossref(new window)

16.
Ritchie, P.A., L. Bargelloni, A. Meyer, J.A. Taylor, J.A. MacDonald, and D.M. Lambert. 1996. Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Mol. Phylogen. Evol., 5, 383-390. crossref(new window)

17.
Riggs, A. 1988. The Bohr effect. Ann. Rev. Physiol., 50, 181-204. crossref(new window)

18.
Ruud, J.T. 1954. Vertebrates without erythrocytes and blood pigment. Nature, 173, 848-850. crossref(new window)

19.
Stam, W.T., J.J. Beintema, R. D’Avino, M. Tamburrini, and G. di Prisco. 1997. Molecular evolution of hemoglobin of Antarctic fishes (Notothenioidei). J. Mol. Evol., 45, 437-445. crossref(new window)

20.
Stam, W.T., J.J. Beintema, R. D’Avino, M. Tamburrini, E. Cocca, and G. di Prisco. 1998. Evolutionary studies on teleost hemoglobin sequences. p. 355-359. In: Fishes of Antartica: A Biological Overview, ed. by di G. Prisco, E. Pisano, and A. Clarke. Springer Verlag, Milan.

21.
Tamburrini, M., R. D’Avino, A. Fago, V. Carratore, A. Kunzmann, and G. di Prisco. 1996. The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J. Biol. Chem., 271, 23780-23785. crossref(new window)

22.
Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and linearized tree. Mol. Biol. Evol., 12, 823-833.

23.
Verde, C., V. Carratore, A. Riccio, M. Tamburrini, E. Parisi, and G. di Prisco. 2002. The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor. J. Biol. Chem., 277, 36312-36320. crossref(new window)

24.
Verde, C., E. Parisi, and G. di Prisco. 2003. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the Root effect. J. Mol. Evol, in press. crossref(new window)