JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Phylogenetic Analysis of Culturable Arctic Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 26, Issue 1,  2004, pp.51-58
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2004.26.1.051
 Title & Authors
Phylogenetic Analysis of Culturable Arctic Bacteria
Lee, Yoo-Kyung; Kim, Hyo-Won; Cho, Kyeung-Hee; Kang, Sung-Ho; Lee, Hong-Kum; Kim, Yea-Dong;
  PDF(new window)
 Abstract
We isolated and identified culturable Arctic bacteria that had inhabited soils around the Korean Arctic Research Station Dasan located at Ny-Alsund, Svalbard, Norway . The collected soils were diluted in distilled water; the diluted soil-water was spread on 3M petri-films at Dasan Station. The petri-films were transported to the laboratory at KORDI, and cultured at . Colonies grown on the petri-films were subsequently cultured on nutrient agar plates at every 7 days. The pure colonies were inoculated into nutrient liquid media, genomic DNA was extracted, and phylogenetic analysis was performed on the basis of 165 rDNA sequences. A total of 227 strains of bacteria were isolated. Among them, 16S rDNA sequences of 185 strains were identical with those of known strains isolated in this study, and 42 strains were finally identified. Phylogenetic analysis using 16S rDNA indicated that the 30 strains belonged to Pseudomonas, 7 strains to Arthrobacter, two strains to Flavobacterium, and the remaining to Achromobacter, Pedobacter, and Psychrobacter. Among the 42 strains, 14 bacteria produced protease: they were 6 strains of Pseudomonax, 4 strains of Arthrobater, an Achromobacter strain, 2 strains of Flavobacterium, and a Pedohacter strain. We expect these Arctic bacteria can be used for screening to develop new industrial enzymes that are active at low temperatures.
 Keywords
Arctic bacteria;Pseudomonas;Arthrobacter;Flavobacterium;Achromobacter;Pedobacter;Psychrobacter;
 Language
English
 Cited by
1.
Isolation of Protease-Producing Arctic Marine Bacteria,;;;;;;

Ocean and Polar Research, 2005. vol.27. 2, pp.215-219 crossref(new window)
2.
북극권 스피츠베르겐 섬의 관속식물 국명 목록,이규;한동욱;현진오;황영심;이유경;이은주;

Ocean and Polar Research, 2012. vol.34. 1, pp.101-110 crossref(new window)
3.
제주 조간대로부터 단백질 가수분해효소를 생산하는 세균의 분리 및 동정,문영건;수브라마니안 다라니다란;김동휘;박소현;허문수;

한국미생물학회지, 2015. vol.51. 4, pp.382-388 crossref(new window)
1.
Isolation of facultatively anaerobic soil bacteria from Ny-Ålesund, Svalbard, Polar Biology, 2013, 36, 6, 787  crossref(new windwow)
2.
Isolation of Protease-Producing Arctic Marine Bacteria, Ocean and Polar Research, 2005, 27, 2, 215  crossref(new windwow)
3.
Isolation and identification of protease-producing bacteria from the intertidal zone in Jeju Island, Korea, The Korean Journal of Microbiology, 2015, 51, 4, 382  crossref(new windwow)
4.
Prospecting for ice association: characterization of freeze–thaw selected enrichment cultures from latitudinally distant soils, Canadian Journal of Microbiology, 2012, 58, 4, 402  crossref(new windwow)
5.
List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region, Ocean and Polar Research, 2012, 34, 1, 101  crossref(new windwow)
 References
1.
Bowman, J.P., J.J. Gosink, S.A. McCammon, T.E. Lewis, D.S. Nichols, P.D. Nichols, J.H. Skerrat, J.T. Staley, and T.A. McMeekin. 1998a. Colwellia demingae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6 n(omega)-3). Int. J. Syst. Bacteriol., 48, 1171-1180. crossref(new window)

2.
Bowman, J.P., S.A. McCammon, J.L. Brown, and T.A. McMeekin. 1998b. Glaciecola punicea gen. nov., sp. nov., and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int. J. Syst. Bacteriol., 48, 1205-1212. crossref(new window)

3.
Bowman, J.P., S.A. McCammon, J.L. Brown, P.D. Nichols, and T.A. McMeekin. 1997a. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea-ice habitats. Int. J. Syst. Bacteriol., 47, 670-677. crossref(new window)

4.
Bowman, J.P., S.A. McCammon, M.V. Brown, D.S. Nichols, and T.A. McMeekin. 1997b. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ Microbiol., 63, 3068-3078.

5.
Bowman, J.P., S.A. McCammon, T.E. Lewis, J.L. Brown, P.D. Nichols, and T.A. McMeekin. 1998c. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic bacterium from Antarctic Sea ice with the ability to form polyunsaturated fatty acids and the reclassification of Flavobacterium gondwanense Dobson, Franzmann 1993 as Psychroflexus gondwanense gen. nov., comb. nov. Microbiol., 144, 1601-1609. crossref(new window)

6.
Bowman, J.P., S.A. McCammon, D.S. Nichols, J.H. Skerrat, S.M. Rea, P.D. Nichols, and T.A. McMeekin. 1997c. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov. -novel species with the ability to produce eicosapentaenoic acid (20:5w3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol., 47, 1040-1047. crossref(new window)

7.
Bowman, J.P., D.S. Nichols, and T.A. McMeekin. 1997d. Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst. Appl. Microbiol., 20, 209-215. crossref(new window)

8.
Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis, Univ. Newcastle, Newcastle upon Tyne, UK.

9.
Cowan, D.A. 1997. The marine biosphere: a global resource for biotechnology. TIBTEC 15, 129-131. crossref(new window)

10.
Davail, S., G. Feller, E. Narinx, and C. Gerday. 1994. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J. Biol. Chem., 269, 17448-17453.

11.
Denner, E.B., B. Mark, H.J. Busse, M. Turkiewicz, and W. Lubitz. 2001. Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst. Appl. Microbiol., 24, 44-53. crossref(new window)

12.
Felsenstein, J. 1993. PHYLIP (Phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA.

13.
Gosink, J.J., C.R. Woese, and J.T. Staley. 1998. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov., and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga- Flavobacterium-Bacteroides group and reclassification of Flectobacillus glomeratus as Polaribacter glomeratus comb. nov. Int. J. Syst. Bacteriol., 48, 223-235. crossref(new window)

14.
Humphry, D.R., A. George, G.W. Black, and S.P. Cummings. 2001. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int. J. Syst. Evol. Microbiol., 51, 1235-1243.

15.
Huston, A.L., B.B. Krieger-Brockett, and J.W. Deming. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol., 2, 383-388. crossref(new window)

16.
Irgens, R.L., J.J. Gosink, and J.T. Staley. 1996. Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int. J. Syst. Bacteriol., 46, 822-826. crossref(new window)

17.
Irwin, J.A., G.A. Alfredsson, A.J. Lanzetti, H.M. Gudmundsson, and P.C. Engel. 2001. Purification and characterisation of serine peptidase from the marine phychrophile strain PA- 43. FEMS Microbiol. Lett., 201, 285-290. crossref(new window)

18.
James, J. and B.K. Simpson. 1996. Application of enzymes in food processing. Crit. Rev. Food Sci. Nutr., 36, 437-463. crossref(new window)

19.
Junge, K., F. Imhoff, T. Staley, and J.W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol., 43, 315-328. crossref(new window)

20.
Kang, S.-H., Y. Kim, J.-S. Kang, K.-C. Yoo, H.I. Yoon, and W. Lee. 2003. Monitoring on the Marine Environment and Phytoplankton of Kongsfjorden, Svalbard, Arctic. Ocean Polar Res., 25, 213-226.

21.
Knoblauch, C., B.B. Jorgensen, and J. Harder. 1999. Community size and metabolic rates of psychrophilic sulfatereducing bacteria in Arctic marine sediments. Appl. Environ Microbiol., 65, 4230-4233.

22.
Maruyama, A., D. Honda, H. Yamamoto, K. Kitamura, and T. Higashihara. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int. J. Syst. Evol. Microbiol., 50, 835-846. crossref(new window)

23.
McCammon, S.A. and J.P. Bowman. 2000. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of Flavobacterium salegens as Salegentibacter salegens gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol., 50, 1055-1063. crossref(new window)

24.
McCammon, S.A., B.H. Innes, J.P. Bowman, P.D. Franzmann, S.J. Dobson, P.E. Holloway, J.H. Skerratt, P.D. Nichols, and L.M. Rankin. 1998. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int. J. Syst. Bacteriol., 48, 1405-1412. crossref(new window)

25.
Moore, ERB., M. Mau, A. Arnscheidt, E.C. Bottger, R.A. Hutson, M.D. Collins, Y. van de Peer, R. de Wachter, and K.N. Timmis. 1996. The determination and comparison of the 16S rRNA gene sequence of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst. Appl. Microbiol., 19, 478-492. crossref(new window)

26.
Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev., 39, 144-167.

27.
Nakagawa, T., Y. Fujimoto, M. Uchino, T. Miyaji, K. Takano, and N. Tomizuka. 2003. Isolation and characterization of psychrophiles producing cold-active beta-galactosidase. Lett. Appl. Microbiol., 37, 154-157. crossref(new window)

28.
Nelson, K., I. Paulsen, C. Weinel, R. Dodson, H. Hilbert, D. Fouts, S. Gill, M. Pop, V. Martins Dos Santos, M. Holmes, L. Brinkac, M. Beanan, R. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. Eisen, K. Timmis, A. Duesterhoft, B. Tummler, and C. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4, 799-808. crossref(new window)

29.
Osorio, C.R., J.L. Barja, R.A. Hutson, and M.D. Collins. 1999. Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int. J. Syst. Bacteriol., 49, 1217-1220. crossref(new window)

30.
Phadtare, S., K. Yamanaka, and M. Inouye. 2000. The cold shock response. p. 33-45. In: Bacterial stress responses. eds. by G. Storz, R. Hengge-Aronis. American Society for Microbiology, Washington, D.C.

31.
Ravenschlag, K., K. Sahm, and R. Amann. 2001. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol., 67, 387-395. crossref(new window)

32.
Reddy, G.S., R.K. Aggarwal, G.I. Matsumoto, and S. Shivaji. 2000. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int. J. Syst. Evol. Microbiol., 50, 1553-1561. crossref(new window)

33.
Reddy, G.S., J.S. Prakash, G.I. Matsumoto, E. Stackebrandt, and S. Shivaji. 2002. Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an antarctic cyanobacterial mat sample. Int. J. Syst. Evol. Microbiol., 52, 1017-1021. crossref(new window)

34.
Romanenko, L.A., P. Schumann, M. Rohde, A.M. Lysenko, V.V. Mikhailov, and E. Stackebrandt. 2002. Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int. J. Syst. Evol. Microbiol., 52, 1291-1297. crossref(new window)

35.
Sahm, K., C. Knoblauch, and R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfatereducing isolates in marine Arctic sediments. Appl. Environ. Microbiol., 65, 3976-3981.

36.
Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406-425.

37.
Secades, P., B. Alvarez, and J.A. Guijarro. 2001. Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol., 67, 2436-2444. crossref(new window)

38.
Spiers, A.J., A. Buckling, and P.B. Rainey. 2000. The causes of Pseudomonas diversity. Microbiol., 146, 2345-2350.

39.
Steyn, P.L., P. Segers, M. Vancanneyt, P. Sandra, K. Kersters, and J.J. Joubert. 1998. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae. Int. J. Syst. Bacteriol., 48, 165-177. crossref(new window)

40.
Storer, A.C. 1991. Engineering of proteases and protease inhibition. Curr. Opin. Biotechnol., 2, 606-613. crossref(new window)

41.
Stover, C.K., X.-Q.T. Pham, A.L. Erwin, S.D. Mizoguchi, P. Warrener, M.J. Hickey, F.S.L. Brinkman, W.O. Hufnagle, D.J. Kowalik, M. Lagrou, R.L. Garber, L. Goltry, E. Tolentino, S. Westbrook-Wadman, Y. Yuan, L.L. Brody, S.N. Coulter, K.R. Folger, A. Kas, K. Larbig, R.M. Lim, K.A. Smith, D.H. Spencer, G.K.-S. Wong, Z. Wu, IT. Paulsen, J. Reizer, M.H. Saier, R.E.W. Hancock, S. Lory, and M.V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406, 959-964. crossref(new window)

42.
Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680. crossref(new window)

43.
Vermeij, P. and D. Blok. 1996. New peptide and protein drugs. Pharm World Sci., 18, 87-93. crossref(new window)

44.
Wauters, G., J. Charlier, M. Janssens, and M. Delmee. 2000. Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J. Clin. Microbiol., 38, 2412-2415.

45.
Yamamoto, S., H. Kasai, D.L. Arnold, R.W. Jackson, A. Vivian, and S. Harayama. 2000. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiol., 146, 2385-2394.

46.
Zeng, R., R. Zhang, J. Zhao, and N. Lin. 2003. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles, 7, 335-337. crossref(new window)

47.
Zhou, J., M.E. Davey, J.B. Figueras, E. Rivkina, D. Gilichinsky, and J.M. Tiedje. 1997. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiol., 143, 3913-3919. crossref(new window)