JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Flow Cytometric Study of Autotrophic Picoplankton in the Tropical Eastern Pacific
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 26, Issue 2,  2004, pp.273-286
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2004.26.2.273
 Title & Authors
A Flow Cytometric Study of Autotrophic Picoplankton in the Tropical Eastern Pacific
Noh, Jae-Hoon; Yoo, Sin-Jae; Lee, Mi-Jin; Son, Seung-Kyu; Kim, Woong-Seo;
  PDF(new window)
 Abstract
The effects of environmental forcing on autotrophic picoplankton distributional patterns were investigated for convergence (), divergence () and oligotrophic () sites in the tropical eastern Pacific during 2001 and 2003 KODOS (Korea Deep Ocean Study) cruises. The distributions of picoplankton populations - Prochlorococcus, Synechococcus and picoeukaryotes algae - were determined by flow cytometric analyses. Latitudinal variations in abundance maxima, vertical profiles, integrated abundance (0-150 m), and estimated carbon biomass were contrasted for each site according to three hydrological conditions. Prochlorococcus showed consistently high abundance in the surface mixed layers of all sites at and showed declining abundance below these layers. However, these decreasing rates were not particularly sharp showing considerably high abundance at or higher even at 100 m depth. Vertical profiles of Synechococcus and picoeukaryotes were generally parallel to each other in all sites. A clear abundance maximum was observed at divergence site at or slightly above the pycnocline depth. Higher abundance was observed at the surface mixed layer for convergence site but a sharp decrease was observed below the pycnocline. However, there was no significant abundance fluctuation with depth at more oligotrophic site (). Integrated cell abundance of Prochlorococcus was high in the oligotrophic site at , and low in the convergence site at . However, opposite pattern was observed for Synechococcus and picoeukaryotes where relatively high integrated cell abundance was shown in the convergence site. Estimated carbon biomass of Prochlorococcus contributed 30.4-80.3% of total autotrophic picoplankton carbon showing the highest contribution in the oligotrophic site and the lowest contribution in the convergence site. Synechococcus contribution of total autotrophic picoplantkon carbon biomass was lower than 5.8% for most of sites except the convergence site where Synechococcus contributed 23.2% of picoplankton carbon biomass. Carbon biomass of picoeukaryotes was 18.8-46.4% showing the highest carbon biomass at the convergence site. Overall, Prochlorococcus showed higher cell abundance and carbon biomass and exhibited different reaction to hydrological conditions when compare with the other two major autotrophic picoplankton groups.
 Keywords
picoplankton;flow cytometer;cell abundance;convergence;divergence;oligotrophic;
 Language
Korean
 Cited by
1.
하계 서태평양의 초미소 식물플랑크톤 분포 특성 연구,노재훈;유신재;강성호;

환경생물, 2006. vol.24. 1, pp.67-80
2.
북동태평양 발산대 해역($7^{\circ}{\sim}10.5^{\circ}N$)의 무기영양염 분포와 재무기질화 비율,손주원;김경홍;김미진;손승규;지상범;황근춘;박용철;

한국해양학회지:바다, 2008. vol.13. 3, pp.178-189
3.
울릉도 주변 해역의 극미소플랑크톤 분포 특성,심정민;윤석현;황재동;진현국;이용화;김영숙;윤상철;

Journal of Environmental Science International, 2008. vol.17. 11, pp.1243-1253 crossref(new window)
4.
동해 남부 연안 해역에서 냉수대 발생이 식물플랑크톤 군집에 미치는 영향,김아람;윤석현;정미희;윤상철;문창호;

한국해양학회지:바다, 2014. vol.19. 4, pp.287-301 crossref(new window)
1.
Seasonal Variability of Picoplankton Around Ulneung Island, Journal of Environmental Science International, 2008, 17, 11, 1243  crossref(new windwow)
2.
The Influences of Coastal Upwelling on Phytoplankton Community in the Southern Part of East Sea, Korea, The Sea, 2014, 19, 4, 287  crossref(new windwow)
 References
1.
해양수산부, 2004. 심해저 자원탄사 및 환경연구 보고서 (I). 해양수산부 보고서 CRPM197-00-1582-5. 770 p.

2.
Andersen, R.A., G.W. Saunders, M.P. Paskind, and J. Sexton. 1993. Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. and sp. nov. and the description of a new algal class, the Pelagophyceae class nov. J. Phycol., 29, 701-715. crossref(new window)

3.
Bearman, G. 1989. Ocean circulation. The open university. Pergamon Press. Toronto. 238 p.

4.
Bidigare, R.R. and M.E. Ondrusek. 1996. Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res. II, 43, 809-833. crossref(new window)

5.
Bitterman, D.S. and D.V. Hansen. 1989. Direct measurements of current shear in the tropical Pacific Ocean and its effect on drift buoy performance. J. Atmos. Ocean Tech., 6, 274-279. crossref(new window)

6.
Blanchot, J., J.M. Andre, C. Navarette, J. Neveux, and M.H. Radenac. 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll condition. Deep-Sea Res. I, 48, 297-314. crossref(new window)

7.
Campbell, L., H.A. Nolla, and D. Vault. 1993. Photosynthetic picoplankton community structure in the subtropical north Pacific Ocean near Hawaii(station ALOHA). Deep-Sea Res. I, 40, 2043-2060. crossref(new window)

8.
Campbell, L., H.A. Nolla, and D. Vault. 1994. The importance of Prochlorococcus to community structure in the central north Pacific Ocean. Limnol. Oceanogr., 39, 954-961. crossref(new window)

9.
Campbell, L., H. Liu, H. Nolla, and D. Vaulot. 1997. Annual variability of phytoplankton and bacteria in the subtropical north Pacific Ocean at station ALOHA during the 1991-1994 ENSO event. Deep-Sea Res. I, 44, 167-192. crossref(new window)

10.
Charpy, L. and J. Blanchot. 1998. Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometery. Mar. Ecol. Prog. Ser., 162, 57-70. crossref(new window)

11.
Chavez, F.P., K.R. Buck, S.K. Service, J. Newton, and T. Barber. 1996. Phytoplankton variability in the central and eastern Pacific. Deep-Sea Res. II, 43, 835-870. crossref(new window)

12.
Chisholm, S.W., R.J. Olson, E.R. Zetter, R. Goerike, J.B. Waterburry, and N.A. Welschmeyer. 1988. A novel freeliving prochlorophyte abundant in the oceanic euphotic zone. Nature, 334, 340-343. crossref(new window)

13.
Chisholm, S.W., S.L. Frankel, R. Goerike, R.J. Olson, B. Palenik, J.B. Waterburry, L. West-Johnsrud, and E.R. Zetter. 1992. Prochlorococcus marinus Nov. Gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll-a and b. Arch. Microbiol., 157, 297-300. crossref(new window)

14.
Chisholm, S.W. and F.M.M. Morel. eds. 1991. What controls phytoplankton production in nutrient-rich areas of the open ocean? Limnol. Oceanogr., 36, 1507-1970. crossref(new window)

15.
Goericke, R. and D.J. Repeta. 1993. Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical north Atlantic Ocean. Mar. Ecol. Prog. Ser., 101, 307-313. crossref(new window)

16.
Goericke, R. and N.A. Welschmeyer. 1993. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep-Sea Res. I, 40, 2283-2294. crossref(new window)

17.
Guillou, L., M.J. Chréiennot-Dinet, L.K. Medlin, H. Claustre, S. Loiseauxde Goér, and D. Vaulot. 1999. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol., 35, 368-381. crossref(new window)

18.
Landry, M.R., J. Kirshtein, and J. Constantinou. 1996. Abundance and distribution of picoplankton in the central equatorial Pacific from $12^{\circ}N$ to $12^{\circ}S$, $140^{\circ}W$. Deep-Sea Res. II, 43, 871-890. crossref(new window)

19.
Landry, M.R. and D.L. Kirchman. 2002. Microbial community structure and variability in the tropical Pacific. Deep-Sea Res. II, 49, 2669-2693. crossref(new window)

20.
Le Borgne, R., R.A. Feely, and D.J. Mackey. 2002. Carbon fluxes in the equatorial Pacific: a synthesis of the JGOFS programme. Deep-Sea Res. II, 49, 2425-2442. crossref(new window)

21.
Le Bouteiller, A. and J. Blanchot. 1991. Size distribution and abundance of phytoplankton in the Pacific equatorial upwelling. La Mer, 29, 175-179.

22.
Moon-van der Staay, S.Y., R. De Wachter, and D. Vaulot. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409, 607-610. crossref(new window)

23.
Moore, L.R., R. Goericke, and S.W. Chisholm. 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Eco. Prog. Ser., 116, 259-275. crossref(new window)

24.
Moore, L.R., G. Rocap, and S.W. Chisholm. 1998. Physiology and molecular physiology of coexisting Prochlorococcus ecotypes. Nature, 393, 464-467. crossref(new window)

25.
Moore, L.R. and S.W. Chisholm. 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotype differences among cultured isolates. Limnol. Oceanogr., 44, 628-638. crossref(new window)

26.
Moore, L.R., A.F. Post, G. Rocap, and S.W. Chisholm. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr., 47, 989-996. crossref(new window)

27.
Olson, R.J., S.W. Chisholm, E.R. Zettler, M.A. Altabet, and J.A. Dusenberry. 1990a. Spatial and temporal distributions of prochlorophyte picoplankton in the north Atlantic Ocean. Deep-Sea Res. I, 37, 1033-1051. crossref(new window)

28.
Olson, R.J., S.W. Chisholm, E.R. Zettler, and E.V. Amburst. 1990b. Pigment, size, and distribution of Synechococcus in the north Atlantic and Pacific Ocean. Limnol. Oceanogr., 35, 45-58. crossref(new window)

29.
Palenik, B. and R. Haselkorn. 1992. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature, 355, 265-267. crossref(new window)

30.
Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York. 173 p.

31.
Partensky, F., N. Hoepffener, W.K.W. Li, O. Ulloa, and D. Vaulot. 1993. Photoacclimination of Prochlorococcus sp. (Prochlorophyta) strains isolated from the north Atlantic and Mediterranean Sea. Plant Physiol., 101, 285-296.

32.
Partensky, F., J. Blanchot, and D. Vaulot. 1999a. Differential distribution of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Marine cyanobacteria. Charpy L, Larkum A.W.D. eds., Bull. L'Institut. Oceanogr. Monaco No. sp., 19, 457-475.

33.
Partensky, F., W.R. Hess, and D. Vaulot. 1999b. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev., 63, 106-127.

34.
Shimada, A., T. Hasrgawa, I. Umeda, N. Kadoya, and T. Maruyama. 1993. Spatial mesoscale patterns of west Pacific picophytoplankton as analyzed by flow cytometry: their contribution to subsurface chlorophyll maxima. Mar. Biol., 115, 209-215. crossref(new window)

35.
Tans, P., I.Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric carbon dioxide budget. Science, 247, 1431-1438. crossref(new window)

36.
Urbach, E., D.L. Robertson, and S.W. Chisholm. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature, 355, 267-270. crossref(new window)

37.
Vaulot, D., F. Partensky, J. Neveux, R.F.C. Mantoura, and C.A. Llewellyn. 1990. Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol. Oceanogr., 35, 1156-1164. crossref(new window)

38.
West, N.J., A.S. Wilhelm, N.J. Fuller, R.I. Amann, R. Rippka, A.F. Post, and D.J. Scanlan. 2001. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology, 147, 1731-1744.

39.
Wyrtki, K. 1981. An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11, 1205-1214.

40.
Wyrtki, K. and B. Kilonsky. 1984. Mean water and current structure during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 14, 242-254. crossref(new window)