Advanced SearchSearch Tips
Implication of the Change in Overturning Circulation to the LGM CO2 Budget
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 26, Issue 3,  2004, pp.501-506
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2004.26.3.501
 Title & Authors
Implication of the Change in Overturning Circulation to the LGM CO2 Budget
Kim, Seong-Joong; Lee, Bang-Yong; Yoon, Ho-Il; Kim, Yea-Dong;
  PDF(new window)
The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric concentration is reduced by 50ppm of that associated with the accumulation of in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric concentration.
LGM ;overturning circulation;numerical simulation;box model;NADW;
 Cited by
Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160000-year record of atmospheric $CO_{2}$. Nature, 329, 408-418. crossref(new window)

Boyle, E.A. 1992. Cadmium and $\delta^{13}$C paleochemical ocean distributions during the stage 2 glacial maximum. Ann. Rev. Earth Planet. Sci., 20, 245-287. crossref(new window)

Boyle, E.A. and L. Keigwin. 1982. Deep circulation of the North Atlantic over the last 200,000 years: geochemical evidence. Science, 218, 784-787. crossref(new window)

Boyle, E.A. and L. Keigwin. 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature, 330, 35-40. crossref(new window)

Broecker, W.S. and T.-H. Peng. 1982. Tracers in the sea. Publication of Lamont-Doherty Geological Observatory, Columbia University, New York.

Broecker, W.S. and G.M. Henderson. 1998. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial $CO_{2}$ changes. Paleoceanography, 13, 352-364. crossref(new window)

Curry, W.B. and G.P. Lohman. 1982. Carbon isotope changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns. Quat. Res., 18, 218-235. crossref(new window)

Curry, W.B., J.-C. Duplessy, L.D. Labeyrie, and N.J. Shackleton. 1988. Changes in distribution of $\delta^{13}C$ of deepwater $\sum_{}^{}CO_{2}$ between the last glaciation and the Holocene. Paleoceanography, 3, 317-342. crossref(new window)

Dickson, R.R. and J. Brown. 1994. The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99(C6), 12319-12341. crossref(new window)

Duplessy, J.-C., J. Moyes, and C. Pujol. 1980. Deep water formation in the North Atlantic ocean during the last ice age. Nature, 286, 476-482. crossref(new window)

Duplessy, J.-C., N.J. Shackleton, R.G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel. 1988. Deep water source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3,343-360. crossref(new window)

Fichefet. T., A. Hovine, and J.-C. Dupplessy. 1994. A model study of the Atlantic thermohaline circulation during the last glacial maximum. Nature, 372, 252-255. crossref(new window)

Foster, T.D. and E.C. Carmack. 1976. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res., 23, 301-317.

Francois, R., M.A. Altabet, E.-F. Yu, D.M. Sigman, M.P. Bacon, M. Frank, G. Bohrmann, G. Bareille, and L.D. Labeyrie. 1997. Contribution of Southern Ocean surfacewater stratification to low atmospheric $CO_{2}$ concentrations during the last glacial period. Nature, 389, 929-935. crossref(new window)

Ganachaud, A. and C. Wunsch. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453-457. crossref(new window)

Gill, A.E. 1973. Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20, 111-140.

Hall, I.R., N. McCave, N.J. Shackleton, G.P. Weedon, and S.E. Harris. 2001. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. Nature, 412, 809- 812. crossref(new window)

Heinze, C., E. Maier-Reimer, and K. Winn. 1991. Glacial p$CO_{2}$ reduction by the world ocean: experiments with the Hamburg carbon cycle model. Paleoceanography, 6, 395-430. crossref(new window)

Killworth, P.D. 1983. Deep convection in the world ocean. Rev. Geophys., 21, 1-26. crossref(new window)

Kim, S.-J., G.M. Flato, and G.J. Boer. 2003. A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium. Clim. Dyn., 20, 635-661.

Knox, F. and M.B. McElroy. 1984. Changes in atmospheric $CO_{2}$: Influence of the marine biota at high latitude. J. Geophys. Res., 89, 4629-4637. crossref(new window)

Leubenberger, M., U. Siegenthaler, and C.C. Langway. 1992. Carbon isotope compositions of atmospheric CO2 during the last ice age from an Antarctic core. Nature, 357,488-490. crossref(new window)

Marino, B.D., M.B. McElroy, R.J. Salawitch, and W.G. Spaulding. 1992. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric $CO_{2}$. Nature, 357, 461-466. crossref(new window)

Oppo, D.W. and R.G. Fairbanks. 1987. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet. Sci. Lett., 86, 1-15. crossref(new window)

Oppo, D.W. and Y. Rosenthal. 1994. Cd/Ca changes in deep Cape Basin core over the past 730,000 years: Response of circumpolar deepwater variability to northern hemisphere ice sheet melting? Paleoceanography, 9, 661-675. crossref(new window)

Oppo, D.W. and M. Horowitz. 2000. Glacial deep water geochemistry: South Atlantic benthic foraminiferal Cd/Ca and $^{13}C$ evidence. Paleoceanography, 15, 147-160. crossref(new window)

Orsi, A.H., G.C. Johnson, and J.L. Bullister. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog.Oceanogr., 43, 55-109. crossref(new window)

Rintoul, S.R. 1991. South Atlantic interbasin exchange. J.Geophys. Res., 96(C2), 2 675-2 692.

Rintoul, S.R. 1998. On the origin and influence of Adelie Land bottom water. p. 151-171. In: Ocean, Ice, and atmosphere: Interactions at the Antarctic Continental Margin. eds. by S.S. Jacobs and W.R. Weiss. Antarctic Research Series, Vol. 75, American Geophysical Union.

Rutberg, R.L., S.R. Hemming, and S.L. Goldstein. 2000. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios.Nature, 405, 935-938. crossref(new window)

Sarmiento, J.L. and J.R. Toggweiler. 1984. A new model for the role of the ocean in determining atmospheric $pCO_{2}$. Nature, 308, 621-624. crossref(new window)

Sarnthein, M., K. Winn, S.J.A. Jung, J.-C. Duplessy, L. Labeyrie, H. Erienkeuser, and G. Ganssen. 1994. Changes in east Atlantic deep water circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209-269. crossref(new window)

Schmitz Jr., W. and M.S. McCartney. 1993. On the North Atlantic circulation. Rev. Geophys., 13, 29-49.

Schulz, M., D. Seidov, M. Sarnthein, and K. Stattegger. 2001. Modeling ocean-atmosphere carbon budgets during the Last Glacial Maximum-Heinrich 1 meltwater event-Bolling transition. Int. J. Earth. Sci., 90, 412-425. crossref(new window)

Siegenthaler, U. and T. Wenk. 1984. Rapid atmospheric $pCO_{2}$ variations and ocean circulation. Nature, 308, 624-626. crossref(new window)

Sievers, H.A. and W.D. Nowlin, Jr. 1984. The stratification and water masses at Drake Passage. J. Geophys. Res.,89, 10489-10514. crossref(new window)

Sigman, D.M. and E.A. Boyle. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869. crossref(new window)

Sloyan, B.M. and S.R. Rintoul. 2001. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143-173. crossref(new window)

Stephens, B.B. and R.F. Keeling. 2000. The influence of Antarctic sea ice on glacial-interglacial $pCO_{2}$ variations. Nature, 409, 171-174. crossref(new window)

Toggweiler, J.R. 1999. Variations of atmospheric $pCO_{2}$ by ventilation of the earth’s deepest water. Paleoceanography,14, 571-588. crossref(new window)

Toggweiler, J.R. and B. Samuels. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep- Sea Res., 42, 477-500. crossref(new window)

Warren, B.A. 1981. Deep circulation of the world ocean. p. 6-41. In: Evolution of Physical Oceanography. eds. by B.A. Warren and C. Wunsch. The MIT Press.

Weaver, A.J., M. Eby, A.F. Fanning, and E.C. Wiebe. 1998. Simulated influence of carbon dioxide, oribital forcing and ice sheets on the climate of the last glacial maximum. Nature, 394, 847-853. crossref(new window)

Whitworth, III, T., A.H. Orsi, S.-J. Kim, W.D. Nowlin, Jr., and R.A. Locarnini. 1998. Water masses and mixing near the Antarctic Slope Front. p. 1-27. In: Ocean, ice, and atmosphere: Interactions at the Antarctic continental margin. eds. by S.S. Jacobs and W.R. Weiss. Antarctic Research Series, Vol. 75, American Geophysical Union.

Yu, E-F, R. Francois, and P. Bacon. 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379, 689-694. crossref(new window)