Advanced SearchSearch Tips
Errors in Estimated Temporal Tracer Trends Due to Changes in the Historical Observation Network: A Case Study of Oxygen Trends in the Southern Ocean
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 27, Issue 2,  2005, pp.189-195
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2005.27.2.189
 Title & Authors
Errors in Estimated Temporal Tracer Trends Due to Changes in the Historical Observation Network: A Case Study of Oxygen Trends in the Southern Ocean
Min, Dong-Ha; Keller, Klaus;
  PDF(new window)
Several models predict large and potentially abrupt ocean circulation changes due to anthropogenic greenhouse-gas emissions. These circulation changes drive-in the models-considerable oceanic oxygen trend. A sound estimate of the observed oxygen trends can hence be a powerful tool to constrain predictions of future changes in oceanic deepwater formation, heat and carbon dioxide uptake. Estimating decadal scale oxygen trends is, however, a nontrivial task and previous studies have come to contradicting conclusions. One key potential problem is that changes in the historical observation network might introduce considerable errors. Here we estimate the likely magnitude of these errors for a subset of the available observations in the Southern Ocean. We test three common data analysis methods south of Australia and focus on the decadal-scale trends between the 1970`s and the 1990`s. Specifically, we estimate errors due to sparsely sampled observations using a known signal (the time invariant, temporally averaged, World Ocean Atlas 2001) as a negative control. The crossover analysis and the objective analysis methods are for less prone to spatial sampling location biases than the area averaging method. Subject to numerous caveats, we find that errors due to sparse sampling for the area averaging method are on the order of several micro-moles . for the crossover and the objective analysis method, these errors are much smaller. For the analyzed example, the biases due to changes in the spatial design of the historical observation network are relatively small compared to the tends predicted by many model simulations. This raises the possibility to use historic oxygen trends to constrain model simulations, even in sparsely sampled ocean basins.
Temporal oxygen trends;Southern Ocean;Estimation errors;Climate change;Assessment of historical observation networks;
 Cited by
Measuring oxygen concentrations to improve the detection capabilities of an ocean circulation observation array, Journal of Geophysical Research, 2008, 113, C2  crossref(new windwow)
Observations of change in the Southern Ocean, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364, 1844, 1657  crossref(new windwow)
Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation, Progress in Oceanography, 2008, 77, 1, 56  crossref(new windwow)
Dissolved oxygen change and freshening of Antarctic Bottom water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013, Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 114, 27  crossref(new windwow)
Alley, R.B. et al. 2003. Abrupt climate change. Science, 299(5615), 2005-2010. crossref(new window)

Bindoff, N.L. and T.J. McDougall. 2000. Decadal changes along an Indian Ocean section at $32^{\circ}S$ and their interpretation. J. Phys. Oceanogr., 30, 1207-1222. crossref(new window)

Bretherton, F.P., R.E. Davis, and C.B. Fandry. 1976. A technique for the objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559-582.

Broecker, W.S. 1997. Thermohaline circulation, the Achilles heel o f o ur c limate s ystem: W ill man made $CO_{2}$ upset the current balance? Science, 278, 1582-1588. crossref(new window)

Conkright, M.E. et al. 2002a. World Ocean Database 2001, Volume 1: Introduction. NOAA Atlas NESDIS 42, U.S. Government Printing Office, Washington, D.C.

Conkright, M.E. et al. 2002b. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, National Oceanographic Data Center, Silver Spring, MD.

Cubasch, U. and G.A. Meehl. 2001. Projections of future climate change, Climate Change 2001 - The scientific basis. p. 526-582. In: Contribution of working group I of the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Diggs, S., J. Kappa., D. Kinkade, and J. Swift. 2002. WOCE Version 3.0. Scripps Institution of Oceanography, University of California, San Diego.

Emerson, S., S. Mecking, and J. Abell. 2001. The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles, 15, 535-554. crossref(new window)

Garcia, H., A. Cruzado, and J. Escanez. 1998. Decadal-scale chemical variability in the subtropical North Atlantic deduced from nutrient and oxygen data. J. Geophys. Res., 103(2), 2817-2830. crossref(new window)

Garcia, H., J. Antonov, T. Boyer, S. Levitus, and R.A. Locarnini. 2003. On oxygen content variability in the upper ocean. EOS Trans. AGU 2004 Ocean Sci. Meet. Suppl., 84(52), OS32L-04.

Gruber, N., K. Keller, and R.M. Key. 2000. What story is told by oceanic tracer concentrations? Science, 290, 455-456. crossref(new window)

Keeling, R.F. and H. Garcia. 2002. The change in oceanic $O_{2}$ inventory associated with recent global warming. Proc. Nat. Acad. Sci., 99, 7848-7853. crossref(new window)

Keller, K., R. Slater, M. Bender, and R.M. Key. 2002. Possible biological or physical explanations for decadal scale trends in North Pacific nutrient concentrations and oxygen utilization. Deep-Sea Res. II, 49, 345-362. crossref(new window)

Latif, M., E. Roeckner, U. Mikolajewski, and R. Voss. 2000. Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13, 1809-1813. crossref(new window)

Matear, R.J., A.C. Hirst, and B.I. McNeil. 2000. Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosys., 1, 2000GC000086. crossref(new window)

Orsi, A.H., T. Whitworth, and W.D. Nowlin. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42(5), 641-673. crossref(new window)

Pahlow, M. and U. Riebesell. 2000. Temporal trends in deep ocean Redfield ratios. Science, 287, 831-833. crossref(new window)

Peng, T.-H. and W.S. Broecker. 1984. Ocean life cycles and the atmospheric $CO_{2}$ content. J. Geophys. Res., 89(5), 8170-8180. crossref(new window)

Plattner, G.-K., F. Joos, and T.F. Stocker. 2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem. Cycles, 16, 1096, doi:10.1029/2001GB001746. crossref(new window)

Ross, A.A. et al. 1999. Nutrient data differences between crossings of WOCE hydrographic lines. EOS, 80(49), supp. OS5.

Rutherford, S., M.E. Mann, T.L. Delworth, and R.J. Stouffer. 2003. Climate field reconstruction under stationary and nonstationary forcing. J. Climate, 16(3), 462-479. crossref(new window)

Sarmiento, J.L., T.M. Hughes, R.J. Stouffer, and S. Manabe. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245-249. crossref(new window)

Shaffer, G., O. Leth, O. Ulloa, J. Bendtsen, and G. Danen. 2000. Warming and circulation change in the Eastern South Pacific Ocean. Geophy. Res. Lett., 27(9), 1247-1250. crossref(new window)

WHPO. 1994. WOCE Hydrographic Programme Office: Requirements for WOCE hydrographic programme data reporting.

Wilks, D.S. 1997. Resampling hypothesis tests for autocorrelated fields. J. Climate, 10(1), 65-82. crossref(new window)

Zhang, Y.-Z., C.W. Mo rdy, L .I. Go rdo n, A. Ro ss, and H.E. Garcia. 2000. Temporal trends in deep ocean Redfield ratios. Science, 289, 1839a. crossref(new window)