JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Natural Background Level Analysis of Heavy Metal Concentration in Korean Coastal Sediments
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 29, Issue 4,  2007, pp.379-389
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2007.29.4.379
 Title & Authors
Natural Background Level Analysis of Heavy Metal Concentration in Korean Coastal Sediments
Lim, Dhong-Il; Choi, Jin-Yong; Jung, Hoi-Soo; Choi, Hyun-Woo; Kim, Young-Ok;
  PDF(new window)
 Abstract
This paper presents an attempt to determine natural background levels of heavy metals which could be used for assessing heavy metal contamination. For this study, a large archive dataset of heavy metal concentration (Cu, Cr, Ni, Pb, Zn) for more than 900 surface sediment samples from various Korean coastal environments was newly compiled. These data were normalized for aluminum (grain-size normalizer) concentration to isolate natural factors from anthropogenic ones. The normalization was based on the hypothesis that heavy metal concentrations vary consistently with the concentration of aluminum, unless these metals are of anthropogenic origin. So, the samples (outliers) suspected of receivingany anthropogenic input were removed from regression to ascertain the "background" relationship between the metals and aluminum. Identification of these outliers was tested using a model of predicted limits at 95%. The process of testing for normality (Kolmogorov-Smirnov Test) and selection of outliers was iterated until a normal distribution was achieved. On the basis of the linear regression analysis of the large archive (please check) dataset, background levels, which are applicable to heavy metal assessment of Korean coastal sediments, were successfully developed for Cu, Cr, Ni, Zn. As an example, we tested the applicability of this baseline level for metal pollution assessment of Masan Bay sediments.
 Keywords
coastal sediment;heavy metals natural;background concentration;linear regression;Mansan Bay;
 Language
Korean
 Cited by
1.
마산만 표층수에서 물리-화학적 수질요인과 엽록소-$a$ 농도 사이의 관계: 격일 관측 자료,정승원;임동일;신현호;정도현;노연호;

환경생물, 2011. vol.29. 2, pp.98-106
2.
천수만 퇴적물에서 미량금속의 지화학적 특성,송윤호;최만식;안윤우;

한국해양학회지:바다, 2011. vol.16. 4, pp.169-179 crossref(new window)
3.
완전분해와 전분해 방법에 의한 영산강.섬진강수계 퇴적물의 중금속농도 상관관계,오다연;최경균;허인애;황인성;김영훈;허진;신현상;오정은;신원식;박정훈;

대한환경공학회지, 2011. vol.33. 1, pp.32-38 crossref(new window)
4.
서해연안 패류의 성분원소 함량 및 퇴적물의 지화학적 특성,최윤석;송재희;박광재;윤상필;정상옥;안경호;

한국패류학회지, 2012. vol.28. 3, pp.225-232 crossref(new window)
5.
남해 동부해역 임해공단 연안퇴적물의 중금속 오염: 마산만 및 진해만,조영길;이창복;

한국해양환경ㆍ에너지학회지, 2012. vol.15. 4, pp.302-313 crossref(new window)
6.
태안 남해포 갯벌 패류양식해역의 환경특성,최윤석;박광재;윤상필;정상옥;안경호;송재희;

한국패류학회지, 2013. vol.29. 1, pp.51-63 crossref(new window)
7.
연안준설 사업에 따른 해양 수질 및 퇴적물 영향평가 개선 방안,김영태;김귀영;전경암;이대인;유준;김희정;김인철;엄기혁;

해양환경안전학회지, 2013. vol.19. 2, pp.119-128 crossref(new window)
8.
전남 남부 도서갯벌 퇴적물의 유기물 및 미량금속 오염 평가,황동운;김평중;

한국수산과학회지, 2013. vol.46. 5, pp.626-637 crossref(new window)
9.
서해 연안 황도와 정산포 바지락 양식장의 환경특성,최윤석;송재희;윤상필;정상옥;안경호;박광재;

한국패류학회지, 2014. vol.30. 2, pp.117-126 crossref(new window)
10.
울산항 주변 표층 퇴적물내 유기물과 미량금속 분포 특성 및 오염 평가,황동운;이인석;최민규;최희구;

한국환경분석학회지, 2014. vol.17. 3, pp.146-160
11.
인천 H항 표층 퇴적물의 오염도 평가,김정호;남세용;

해양환경안전학회지, 2014. vol.20. 5, pp.504-510 crossref(new window)
12.
Desulfovibrio Desulfuricans과 제올라이트를 이용한 해양 내의 Zn, As 제거용 미생물 담체 개발,김인화;최진하;주정옥;오병근;

KSBB Journal, 2015. vol.30. 3, pp.114-118 crossref(new window)
13.
울산-온산연안 표층퇴적물 내 미량금속 오염도 및 생태위해성 평가,선철인;김동재;이용우;김성수;

한국해양환경ㆍ에너지학회지, 2015. vol.18. 4, pp.245-253 crossref(new window)
14.
한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성,조형찬;조영길;

한국해양학회지:바다, 2015. vol.20. 4, pp.159-168 crossref(new window)
15.
한산거제만 주변 퇴적물의 유기물과 미량금속 분포 특성,황동운;이인석;최민규;심정희;

한국환경분석학회지, 2015. vol.18. 3, pp.131-143
1.
Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water, KSBB Journal, 2015, 30, 3, 114  crossref(new windwow)
2.
The toxic effects on the stress and immune responses in juvenile rockfish, Sebastes schlegelii exposed to hexavalent chromium, Environmental Toxicology and Pharmacology, 2016, 43, 128  crossref(new windwow)
3.
Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium (Cr6+) exposure, Ecotoxicology and Environmental Safety, 2016, 125, 78  crossref(new windwow)
4.
Monitoring of trace metals in coastal sediments around Korean Peninsula, Marine Pollution Bulletin, 2016, 102, 1, 230  crossref(new windwow)
5.
Heavy Metal Contamination in Surface Sediments from Masan and Jinhae Bay, Southeast Coast of Korea, Journal of Korean Society for Marine Environmental Engineering, 2012, 15, 4, 302  crossref(new windwow)
6.
Evaluation of Organic Matter and Trace Metal Contaminations of Intertidal Sediments from Coastal Islands in the Southern Region of Jeollanam Province, Korean Journal of Fisheries and Aquatic Sciences, 2013, 46, 5, 626  crossref(new windwow)
7.
The Environmental Characteristics and Factors on the Cultured manila clam (Ruditapes philippinarum) at Hwangdo and Jeongsanpo of Taean in the West coast of Korea, The Korean Journal of Malacology, 2014, 30, 2, 117  crossref(new windwow)
8.
Pollution and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Ulsan-Onsan Coast, Journal of the Korean Society for Marine Environment & Energy, 2015, 18, 4, 245  crossref(new windwow)
9.
Correlation of Heavy Metal Concentrations between Total Digestion and Aqua Regia Digestion for Sediments from Yeongsan and Seomjin Watersheds, Journal of Korean Society of Environmental Engineers, 2011, 33, 1, 32  crossref(new windwow)
10.
Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea, The Sea, 2015, 20, 4, 159  crossref(new windwow)
11.
Trace metals in Chun-su Bay sediments, The Sea, 2011, 16, 4, 169  crossref(new windwow)
12.
Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea, Science of The Total Environment, 2014, 482-483, 80  crossref(new windwow)
13.
Estimation of Pollution Degree of Surface Sediment from Incheon H Wharf, Journal of the Korean Society of Marine Environment and safety, 2014, 20, 5, 504  crossref(new windwow)
14.
The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean, The Korean Journal of Malacology, 2013, 29, 1, 51  crossref(new windwow)
15.
Contents of Inorganic Elements in Shellfish and Geochemical Characteristics of Surface sediments on the West Coast of Korea, The Korean Journal of Malacology, 2012, 28, 3, 225  crossref(new windwow)
16.
Improvements in the Environmental Impact Assessment on Seawater and Sediment Qualities for Coastal Dredging Projects, Journal of the Korean Society of Marine Environment and Safety, 2013, 19, 2, 119  crossref(new windwow)
 References
1.
강석범. 2001. 한반도 서남해안에 분포하는 퇴적물들의 지화 학적인 특성과 환경오염에 대한 연구. 이학박사 학위논문, 전남대학교. 121 p

2.
김경태, 김은수, 조성록, 정경호, 박준건. 2005. 시화호 환경 중의 중금속 분포 특성과 오염. 한국해양환경공학회지, 8, 148-157

3.
서만석. 1995. 금강하구 연안해역에 분포하는 표층퇴적물의 지화학적 및 광물학적 연구. 이학박사 학위논문, 조선대학교. 250 p

4.
엄인권, 임동일, 이미경, 전수경, 정회수. 2003. 한국 동해안 영일만 표층 퇴적물의 금속 함량과 공간 변화 특성. 한국지구과학회지, 24, 477-490

5.
이종현, 이정석, 김범수, 이창복, 고철환. 1998. 경기만 퇴적물의 중금속 분포 특성. 한국해양학회지 바다, 3, 103-111

6.
조영길, 1994, 한반도 주변해역 퇴적물 중 금속원소의 분포 와 기원에 관한 연구. 이학박사 학위논문, 서울대학교. 262 p

7.
조영길, 김주용. 1998. 영산강 하상퇴적물의 중금속 함량. 한국환경과학회지, 7, 281-290

8.
조영길, 박경양. 1998. 영산강 하구 표층 퇴적물의 중금속 함량 및 분포. 한국환경과학회지, 7, 549-557

9.
조영길, 류상옥, 구영경, 김주용. 2001. 새만금 조간대 표층퇴적물의 성분원소 함량과 지화학적 특성. 한국해양학회지 바다, 6, 27-34

10.
현상민, 천종화, 이희일. 1999. 시화호의 퇴적환경과 중금속 오염. 한국해양학회지 바다, 4, 198-207

11.
현상민, 이태희, 최진성, 최동림, 우한준. 2003. 광양만 및 여수해만 표층퇴적물의 지화학적 특성과 중금속 오염. 한국해양학회지 바다, 8, 380-391

12.
한국해양연구원. 1999. 진해-마산만 수지환경 관리모델 개발 (II). 395 p

13.
한국해양연구원. 2006. 남해 특별관리해역의 환경위해성평가 연구 (1) 마산연안 중심연구. 592 p

14.
Aloupi, M. and M. Angelidis. 2001. Normalization to lithium for the assessment of metal contamination in coastal sediments cores from the Aegean Sea, Greece. Mar. Environ. Res., 52, 1-12 crossref(new window)

15.
Gibbs, R.J. 1993. Metals of the bottom muds in Townsville harbour, Australia. Environ. Pollut., 81, 297-300 crossref(new window)

16.
Grousset, F., C. Quetel, B. Thomas, O. Donard, C. Lambert, F. Guillard, and A. Monaco. 1995. Anthropogenic vs. lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc Sn, Zn) in water column particles: Northwestern Mediterranean Sea. Mar. Chem., 48, 291-310 crossref(new window)

17.
Hanson, P., D. Evans, D. Colby, and V. Zdanowics. 1993. Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statistical modeling of sediments. Mar. Environ. Res., 36, 237-266 crossref(new window)

18.
Hilton, J., W. Davison, and U. Ochsenbein. 1985. A mathematical model for analysis of sediment core data: Implications for enrichment factor calculations and tracemetal transport mechanism. Chem. Geol., 48, 281-291 crossref(new window)

19.
Kersten, M. and F. Smedes. 2002. Normalization procedures for sediment contaminants in spatial and temporal monitoring. J. Environ. Monit., 4, 109-115 crossref(new window)

20.
Lim, D.I., H.S. Jung, J.Y. Choi, S. Yang, and K.S. Ahn. 2006. Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance. Cont. Shelf Res., 26, 15-24 crossref(new window)

21.
Louma, S. 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments. p. 51-66. In: Heavy metals in the marine environment. ed. by R.W. Furness and P.S. Rainbow. CRC Press, Boca Raton, FL

22.
Loring, D. and R. Rantala. 1992. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage., 19, 81-97 crossref(new window)

23.
Marin, B. 1997. Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta., 342, 305-318 crossref(new window)

24.
Murray, K. 1996. Statistical comparison of heavy-metal concentrations in river sediments. Environ. Geol., 27, 54-58 crossref(new window)

25.
NOAA. 1991. The potential for biological effects of sedimentsorbed contaminants tested in the national status and trends program. NOAA Technical Memorandum., NOS OMA 52

26.
Oh, J.K. 1997. Depositional Environment and Distribution of Heavy Metal off the Shihwa Dam. J. Korean Soc. Oceanogr., 32, 120-127

27.
Ranasinghe, P.N., R.L.R. Chandrajith, C.B. Dissanayake, and M.S. Rupasinghe. 2002. Importance of grain size factor in distribution of trace elements in stream sediments of tropical high grade terrains-a case study from Sri Lanka. Chem. Erde., 62, 243-253 crossref(new window)

28.
Roussiez, V., W. Ludwig, J.L. Probst, and A. Monaco. 2005. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): An approach based on $^{133}Cs$ normalization and lead isotope measurements. Environ. Pollut., 138, 167-177 crossref(new window)

29.
Schropp, S., G. Lewis, H. Windom, J. Ryann, F. Caldner, and L. Burney. 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13, 227-235 crossref(new window)

30.
Schiff, K. and S. Weisberg. 1999. Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar. Environ. Res., 48, 161-176 crossref(new window)

31.
Summers, J.K., T.L. Wade, V.D. Engle, and Z.A. Malaeb. 1996. Normalization of metal concentration in estuarine sediments from the Gulf of Mexico. Estuaries, 19, 581-594 crossref(new window)

32.
Szefer, P., G.P. Glasby, J. Pempkowiak, and R. Kaliszan. 1995. Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem. Geol., 120, 111-126 crossref(new window)

33.
Turekian, K.K. and K.H. Wedepohl. 1961. Distribution of the elements in some major units of the earth's crust. Bull. Geol. Soc. Am., 72, 175-192 crossref(new window)

34.
Ujevic, I., N. Odzak, and A. Baric. 2000. Trace metal accumulation in different grain size fractions of the sediments from a semi-enclosed bay heavily contaminated by urban and industrial waste waters. Water Res., 34, 3055-3061 crossref(new window)

35.
Zhang, C., L. Wang, G. Li, S. Dong, J. Yang, and X. Wang. 2002. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Appl. Geochem., 17, 59-68 crossref(new window)