Advanced SearchSearch Tips
Variation of Calcium Carbonate Content and Dansgaard-Oeschger Events in the Continental Slope of the Central Bering Sea during the Last 65 Kyr
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 30, Issue 3,  2008, pp.215-224
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2008.30.3.215
 Title & Authors
Variation of Calcium Carbonate Content and Dansgaard-Oeschger Events in the Continental Slope of the Central Bering Sea during the Last 65 Kyr
Kim, Sung-Han; Khim, Boo-Keun; Itaki, Takuya; Shin, Hye-Sun;
  PDF(new window)
A piston core (MR06-04 PC23A) collected from the northern continental slope in the central Bering Sea has recorded the high-resolution millennial-scale variation of calcium carbonate () content during the last 65 kyr. An estimation of the age of the core sediments was carried out by using the lithologic correlation of the deglacial laminated layers with a neighboring core (HLY02023JPC), complementing the last appearance datum of both Lychnocanoma nipponica sakaii (54 kyr) and Amphimelissa setosa (85 kyr). The probable age of core MR06-04 PC23A was approximately younger than 65 kyr. Two distinct events of a significant increase of in the deglacial laminated sediments clearly correspond to MWP1A and MWP1B in the Bering Sea (Gorbarenko et al. 2005) and to T1ANP and T1BNP in the North Pacific (Gorbarenko 1996). These pronounced peaks of contents result from the elevated carbonate production in the surface water and the subsequent weakened dilution due to terrestrial input, along with an enhanced oxygen minimum zone. The contents are low () during the last glacial period mainly because of a low carbonate production caused by an expanded sea-ice cover and an increased dilution by terrigenous particles due to their closer distance to the continent during the sea-level low stand. The occurrence of seven distinct peaks in core MR06-04 PC23A is remarkable during MIS 3 and MIS 4, and they most likely correlate to the short-term millennial Dansgaard-Oeschger events.
calcium carbonate;Dansgaard-Oeschger events;deglaciation;paleoclimate;Bering Sea;
 Cited by
Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period, Paleoceanography, 2012, 27, 3, n/a  crossref(new windwow)
Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian speciesCycladophora davisiana, Journal of Quaternary Science, 2009, 24, 8, 856  crossref(new windwow)
Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160,000-year record of atmospheric $CO_2$. Nature, 329, 408-414 crossref(new window)

Behl, R.J. and J.P. Kennett. 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature, 379, 243-246 crossref(new window)

Bond, G.C. and R. Lotti. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science, 267, 1005-1010 crossref(new window)

Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365, 143-147 crossref(new window)

Brunelle, B.G., D.M. Sigman, M.S. Cook, L.D. Keigwin, G.H. Haug, B. Plessen, G. Schettler, and S.L. Jaccard. 2007. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanogr., 22, PA1215. doi:10.1029/2005PA001205 crossref(new window)

Cook, M.S., L.D. Keigwin, and C.A. Sancetta. 2005. The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res. II, 52, 2163-2173 crossref(new window)

Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjornsdottir, J. Jouzel, and G. Bond. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218-220 crossref(new window)

Fairbanks, R.G. 1989. A 17000-year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642 crossref(new window)

Favorite, F., A.J. Dodimead, and K. Nasu. 1976. Oceanography of the subarctic Pacific region, 1960-71. Bull. Intern. North Pacific Comm., 33, 1-187

Feely, R.A., C.L. Sabine, K. Lee, F.J. Millero, M.F. Lamb, D. Greeley, J.L. Bullister, R.M. Key, T.-H. Peng, A. Kozyr, T. Ono, and C.S. Wong. 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Glob. Biogeochem. Cycles, 16, 1144. doi:10.1029/2002GB001866 crossref(new window)

Gorbarenko, S.A. 1996. Stable isotope and lithologic evidence of Late-Glacial and Holocene Oceanography of the northwestern Pacific and its marginal seas. Quat. Res., 46, 230-250 crossref(new window)

Gorbarenko, S.A., I.A. Basov, M.P. Chekhovskaya, J. Southon, T.A. Khusid, and A.V. Artemova. 2005. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: Geochemical and paleontological evidence. Deep-Sea Res. II, 52, 2174-2185 crossref(new window)

Griffin, J.M. 2003. Global Climate Change: The science, economics and politics. Edward Elgar, Cheltenham, UK. 280 p

Hendy, I.L. and J.P. Kennett. 2000. Dansgaard-Oeschger cycles and the California Current system: Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program Hole 893A. Paleoceanogr., 15, 30-42 crossref(new window)

Honjo, S. 1990. Particle fluxes and modern sedimentation in the polar oceans. p. 687-739. In: Polar oceanography, ed. by W.O. Smith. Academic Press, New York

Hood, D.W. 1983. The Bering Sea. p. 337-373. In: Estuaries and enclosed Seas, ed. by B.H. Ketchum. Elsevier Scientific Pub. Co

Itaki, T., N. Komatsu, and I. Motoyama. 2007. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 247, 115-130 crossref(new window)

Johnsen, S.J., H.B. Clausen, W. Dansgaard, N.S. Gundestrup, C.U. Hammer, and H. Tauber. 1995. The eem stable isotope record along the GRIP ice core and its interpretation. Quat. Res., 43, 117-124 crossref(new window)

Katsuki, K. and K. Takahashi. 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52, 2110-2130 crossref(new window)

Khen, G.V. 1999. Hydrography of western Bering Sea shelf water. p. 161-176. In: Dynamics of the Bering Sea, ed. by T.R. Loughlin and K. Ohtani. Univ. Alaska Sea Grant, Fairbanks

Kiefer, T., M. Sarnthein, H. Erlenkeuser, P.M. Grootes, and A.P. Roberts. 2001. North Pacific response to millennialscale changes in ocean circulation over the last 60 kyr. Paleoceanogr., 16, 179-189 crossref(new window)

Martinson, D.G., N.G. Pisias, J.D. Hays, J. Imbrie, T.C. Moore, and N.J. Shackleton. 1987. Age dating and the orbital theory of ice ages: Development of a highresolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1-29 crossref(new window)

Maykut, G.A. 1978. Energy exchange over young sea ice in the central Arictic. J. Geophys. Res., 83, 3646-3658 crossref(new window)

Morley, J.J. and S.W. Robinson. 1986. Improved method for correlating late Pleistocene/Holocence records from the Bering Sea: Application of a biosiliceous/geochemical stratigraphy. Deep-Sea Res., 33, 1203-1211 crossref(new window)

Niebauer, H.J. 1998. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996. J. Geophys. Res., 103, 27717-27737 crossref(new window)

Niebauer, H.J., N.A. Bond, L.P. Yakunin, and V.V. Plotnikov. 1999. An update on the climatology and sea ice of the Bering Sea. p. 29-59. In: Dynamics of the Bering Sea, ed. by T.R. Loughlin and K. Ohtani. Univ. Alaska Sea Grant, Fairbanks

Okazaki, Y., K. Takahashi, H. Asahi, K. Katsuki, J. Hori, H. Yasuda, Y. Sagawa, and H. Tokuyama. 2005. Productivity changes in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52, 2150-2162 crossref(new window)

Penrose, N. 1982. Biogenic sediments. p. 455-492. In: Marine Geology, ed. by J.P. Kennett. Prentice-Hall, INC., Englewood Cliffs

Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429-436 crossref(new window)

Sancetta, C. 1983. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep-Sea Res., 30, 851-869 crossref(new window)

Sancetta, C., L. Heusser, L. Labeyrie, S.A. Naidu, and S.W. Robinson. 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62, 55- 68 crossref(new window)

Scipps Institution of Oceanography. 1973. Initial reports of the deep sea drilling project, Vol. 19, National Science Foundation, Washington (US Goverment Printing Office). 913 p

Stabeno, P.J., J.D. Schumacher, and K. Ohtani. 1999. The physical oceanography of the Bering Sea. p. 1-28. In: Dynamics of the Bering Sea, ed by. T.R. Loughlin and K. Ohtani. Univ. Alaska Sea Grant, Fairbanks

Takahashi, K. 1998. The Bering and Okhotsk Seas: Modern and paleoceanographic changes and gateway impact. J. Asian Earth Sci., 16, 49-58 crossref(new window)

Takahashi, K. 2005. The Bering Sea and paleoceanography. Deep-Sea Res. II, 52, 2080-2091 crossref(new window)

Taylor, K.C., G.W. Lamorey, R.B. Doyle, R.B. Alley, P.M. Grootes, P.A. Mayewski, J.W.C. White, and L.K. Barlow. 1993. The 'flickering switch' of late Pleistocene climate change. Nature, 361, 432-436 crossref(new window)